A154923 A symmetrical triangle sequence made from A154537:q(x,n)= Sum[(2*m + 1)^n*x^m/m!, {m, 0, Infinity}]/(Exp[x]); p(x,n)=q(x,n)+x^n*q(1/x,n); t(n,m)=coefficients(p(x,n)).
2, 3, 3, 5, 16, 5, 9, 62, 62, 9, 17, 208, 464, 208, 17, 33, 642, 2680, 2680, 642, 33, 65, 1880, 13404, 24320, 13404, 1880, 65, 129, 5322, 62188, 180488, 180488, 62188, 5322, 129, 257, 14752, 280144, 1209600, 1858752, 1209600, 280144, 14752, 257, 513
Offset: 0
Examples
{2}, {3, 3}, {5, 16, 5}, {9, 62, 62, 9}, {17, 208, 464, 208, 17}, {33, 642, 2680, 2680, 642, 33}, {65, 1880, 13404, 24320, 13404, 1880, 65}, {129, 5322, 62188, 180488, 180488, 62188, 5322, 129}, {257, 14752, 280144, 1209600, 1858752, 1209600, 280144, 14752, 257}, {513, 40418, 1262544, 7828640, 16609824, 16609824, 7828640, 1262544, 40418, 513}, {1025, 110248, 5787604, 50950400, 140957728, 187181568, 140957728, 50950400, 5787604, 110248, 1025}
Crossrefs
Programs
-
Mathematica
p[x_, n_] = Sum[(2*m + 1)^n*x^m/m!, {m, 0, Infinity}]/(Exp[x]); Table[FullSimplify[ExpandAll[p[x, n]]], {n, 0, 10}]' Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x] + Reverse[ CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x]], {n, 0, 10}]' Flatten[%]
Formula
q(x,n)= Sum[(2*m + 1)^n*x^m/m!, {m, 0, Infinity}]/(Exp[x]);
p(x,n)=q(x,n)+x^n*q(1/x,n);
t(n,m)=coefficients(p(x,n)).
Comments