A154929 A Fibonacci convolution triangle.
1, 2, 1, 3, 4, 1, 5, 10, 6, 1, 8, 22, 21, 8, 1, 13, 45, 59, 36, 10, 1, 21, 88, 147, 124, 55, 12, 1, 34, 167, 339, 366, 225, 78, 14, 1, 55, 310, 741, 976, 770, 370, 105, 16, 1, 89, 566, 1557, 2422, 2337, 1443, 567, 136, 18, 1, 144, 1020, 3174, 5696, 6505, 4920, 2485
Offset: 0
Examples
Triangle begins 1; 2, 1; 3, 4, 1; 5, 10, 6, 1; 8, 22, 21, 8, 1; 13, 45, 59, 36, 10, 1; 21, 88, 147, 124, 55, 12, 1; 34, 167, 339, 366, 225, 78, 14, 1; 55, 310, 741, 976, 770, 370, 105, 16, 1; Production array is 2, 1; -1, 2, 1; 3, -1, 2, 1; -10, 3, -1, 2, 1; 36, -10, 3, -1, 2, 1; -137, 36, -10, 3, -1, 2, 1; 543, -137, 36, -10, 3, -1, 2, 1; or ((1+x+sqrt(1+6x+5x^2))/2,x) beheaded. T(5,3) = T(4,3) + T(4,2) + T(3,3) + T(3,2) = 8 + 21 + 1 + 6 = 36. - _Philippe Deléham_, Jan 18 2009 From _Philippe Deléham_, Jan 25 2012: (Start) Triangle (0,2,-1/2,-1/2,0,0,0,...) DELTA (1,0,0,0,0,0,...) begins: 1; 0, 1; 0, 2, 1; 0, 3, 4, 1; 0, 5, 10, 6, 1; 0, 8, 22, 21, 8, 1; 0, 13, 45, 59, 36, 10, 1; 0, 21, 88, 147, 124, 55, 12, 1; (End)
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..11475 (rows 0 <= n <= 150)
- Milan Janjić, Words and Linear Recurrences, J. Int. Seq. 21 (2018), #18.1.4.
Programs
-
Mathematica
Table[Sum[Binomial[j + 1, n - j] Binomial[j, k], {j, 0, n}], {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Apr 25 2018 *)
Formula
Riordan array ((1+x)/(1-x-x^2), x(1+x)/(1-x-x^2));
Triangle T(n,k) = Sum_{j=0..n} C(j+1,n-j)*C(j,k).
T(n,k) = T(n-1,k) + T(n-1,k-1) + T(n-2,k) + T(n-2,k-1), T(0,0)=1, T(1,0)=2, T(n,k)=0 if k > n. - Philippe Deléham, Jan 18 2009
Sum_{k=0..n} T(n,k)*x^k = A000045(n+1), A028859(n), A125145(n), A086347(n+1) for x=0,1,2,3 respectively. - Philippe Deléham, Jan 19 2009
Comments