cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A154930 Inverse of Fibonacci convolution array A154929.

Original entry on oeis.org

1, -2, 1, 5, -4, 1, -15, 14, -6, 1, 51, -50, 27, -8, 1, -188, 187, -113, 44, -10, 1, 731, -730, 468, -212, 65, -12, 1, -2950, 2949, -1956, 970, -355, 90, -14, 1, 12235, -12234, 8291, -4356, 1785, -550, 119, -16, 1, -51822, 51821, -35643, 19474, -8612, 3021
Offset: 0

Views

Author

Paul Barry, Jan 17 2009

Keywords

Comments

Alternating sign version of A104259. Row sums are (-1)^n*A033321. First column is (-1)^n*A007317.

Examples

			Triangle begins
1,
-2, 1,
5, -4, 1,
-15, 14, -6, 1,
51, -50, 27, -8, 1,
-188, 187, -113, 44, -10, 1,
731, -730, 468, -212, 65, -12, 1,
-2950, 2949, -1956, 970, -355, 90, -14, 1
Production array is
-2, 1,
1, -2, 1,
-1, 1, -2, 1,
1, -1, 1, -2, 1,
-1, 1, -1, 1, -2, 1,
1, -1, 1, -1, 1, -2, 1,
-1, 1, -1, 1, -1, 1, -2, 1
or ((1-x-x^2)/(1+x),x) beheaded.
		

Crossrefs

Formula

Riordan array ((1/(1+x))c(-x/(1+x)), (x/(1+x))c(x/(1+x))), c(x) the g.f. of A000108;
Riordan array ((sqrt(1+6x+5x^2)-x-1)/(2x(1+x)),(sqrt(1+6x+5x^2)-x-1)/ (2(1+x)));
Triangle T(n,k) = sum{j=0..n, (-1)^(n-k)*C(n,j)*C(2j-k,j-k)(k+1)/(j+1)}.
T(n,k) = T(n-1,k-1) -2*T(n-1,k) + Sum_{i, i>=0} T(n-1,k+1+i)*(-1)^i. - Philippe Deléham, Feb 23 2012

A155020 a(n) = 2*a(n-1) + 2*a(n-2) for n > 2, a(0)=1, a(1)=1, a(2)=3.

Original entry on oeis.org

1, 1, 3, 8, 22, 60, 164, 448, 1224, 3344, 9136, 24960, 68192, 186304, 508992, 1390592, 3799168, 10379520, 28357376, 77473792, 211662336, 578272256, 1579869184, 4316282880, 11792304128, 32217174016, 88018956288, 240472260608, 656982433792, 1794909388800, 4903783645184, 13397386067968
Offset: 0

Views

Author

Philippe Deléham, Jan 19 2009

Keywords

Comments

Equals 1 followed by A028859. - Klaus Brockhaus, Jul 18 2009
a(n) is the number of ways to arrange 1- and 2-cent postage stamps (totaling n cents) in a row so that the first stamp is correctly placed and any subsequent stamp may (or not) be placed upside down.
Number of compositions of n into parts k >= 1 where there are F(k+1) = A000045(k+1) sorts of part k. - Joerg Arndt, Sep 30 2012
a(n) is the top-left entry of the n-th power of the 3 X 3 matrix [1, 1, 1; 1, 1, 1; 1, 1, 0] or of the 3 X 3 matrix [1, 1, 1; 1, 0, 1; 1, 1, 1].
From Tom Copeland, Nov 08 2014: (Start)
(Setting a(0)=0.)
This array is one of a family of Catalan arrays related by compositions of the special fractional linear (Möbius) transformations P(x,t) = x/(1-t*x); its inverse Pinv(x,t) = P(x,-t); and an o.g.f. of the Catalan numbers A000108, C(x) = (1-sqrt(1-4x))/2; and its inverse Cinv(x) = x*(1-x). (Cf. A091867.)
O.g.f.: G(x) = -P(P(Cinv(-x),1),1) = -P(Cinv(-x),2) = x(1+x)/(1-2x(1+x)) = (x+x^2)/(1-2(x+x^2)) = x + 3*x^2 + 8*x^3 + ... = A155020(x) with a(0)=0.
Ginv(x) = -C(P(P(-x,-1),-1)) = -C(P(-x,-2)) = (-1+sqrt(1+4*x/(1+2*x)))/2 = x*A064613(-x).
G(x) = x*(1+x) + 2*(x*(1+x))^2 + 2^2*(x*(1+x))^3 - ..., and so this array contains the row sums of A030528 * Diag(1, 2^1, 2^2, 2^3, ...). (End)
INVERT transform of Fibonacci(n+1). - Alois P. Heinz, Feb 11 2021

Examples

			a(2) = 3 because we have {1,1}, {1,_1} and {2}.
a(3) = 8 because we can order the stamps in eight ways: {1,1,1}  {1,1,_1}  {1,_1,1}  {1,_1,_1}  {2,1}   {2,_1}  {1,2}   {1,_2}, where _1 and _2 are upside down stamps.
a(4) = 22 = 2*3 + 2*8 because we can append 2 or _2 to the a(2) examples and 1 or _1 to the a(3) examples. - _Jon Perry_, Nov 10 2014
		

Crossrefs

Sequences of the form a(n) = m*(a(n-1) + a(n-2)) with a(0)=1, a(1) = m-1, a(2) = m^2 -1: this sequence (m=2), A155116 (m=3), A155117 (m=4), A155119 (m=5), A155127 (m=6), A155130 (m=7), A155132 (m=8), A155144 (m=9), A155157 (m=10).
Cf. A028859 (essentially the same sequence). - Klaus Brockhaus, Jul 18 2009
Row sums of A155112.

Programs

  • Magma
    I:=[1,1,3,8]; [n le 4 select I[n] else 2*Self(n-1)+2*Self(n-2): n in [1..40]]; // Vincenzo Librandi, Nov 10 2014
    
  • Maple
    a:= proc(n) option remember; `if`(n=0, 1,
          add(a(n-i)*combinat[fibonacci](1+i), i=1..n))
        end:
    seq(a(n), n=0..42);  # Alois P. Heinz, Feb 11 2021
  • Mathematica
    CoefficientList[Series[(1 -x -x^2)/(1 -2x -2x^2), {x,0,20}], x]
    With[{m=2}, LinearRecurrence[{m, m}, {1, m-1, m^2-1}, 30]] (* G. C. Greubel, Mar 25 2021 *)
  • Maxima
    makelist(sum(binomial(n-k,k)*2^(n-k-1),k,0,floor(n/2)),n,1,12); /* Emanuele Munarini, Feb 04 2014 */
    
  • PARI
    Vec( (1-x-x^2)/(1-2*x-2*x^2) + O(x^66) )  /* Joerg Arndt, Sep 30 2012 */
    
  • Sage
    [1]+[(-1)*(sqrt(2)*i)^(n-2)*chebyshev_U(n, -sqrt(2)*i/2) for n in (1..30)] # G. C. Greubel, Mar 25 2021

Formula

G.f.: (1 - x - x^2)/(1 - 2*x - 2*x^2).
G.f.: 1/( 1 - Sum_{k>=1} (x+x^2)^k ) - 1/( 1 - Sum_{k>=1} F(k+1)*x^k ) where F(k) = A000045(k). - Joerg Arndt, Sep 30 2012
a(n+1) = Sum_{k=0..n} A154929(n,k) = A028859(n).
a(n) = Sum_{k=0..floor(n/2)} ( binomial(n-k,k)*2^(n-k-1) ) for n > 0. - Emanuele Munarini, Feb 04 2014
a(n) = (1/2)*[n=0] - (sqrt(2)*i)^(n-2)*ChebyshevU(n, -sqrt(2)*i/2). - G. C. Greubel, Mar 25 2021
E.g.f.: (3 + exp(x)*(3*cosh(sqrt(3)*x) + sqrt(3)*sinh(sqrt(3)*x)))/6. - Stefano Spezia, Mar 02 2024

A154964 a(n) = 3*a(n-1) + 6*a(n-2), n>2, a(0)=1, a(1)=1, a(2)=5.

Original entry on oeis.org

1, 1, 5, 21, 93, 405, 1773, 7749, 33885, 148149, 647757, 2832165, 12383037, 54142101, 236724525, 1035026181, 4525425693, 19786434165, 86511856653, 378254174949, 1653833664765, 7231026043989, 31616080120557, 138234396625605, 604399670600157, 2642605391554101
Offset: 0

Views

Author

Philippe Deléham, Jan 18 2009

Keywords

Comments

For n>=1, a(n) is the number of words of length n-1 over the alphabet {1,2,3,4,5} such that no two even numbers appear consecutively. - Armend Shabani, Mar 01 2017

Programs

  • Mathematica
    {1}~Join~LinearRecurrence[{3, 6}, {1, 5}, 25] (* or *)
    CoefficientList[Series[(1 - 2 x - 4 x^2)/(1 - 3 x - 6 x^2), {x, 0, 25}], x] (* Michael De Vlieger, Mar 02 2017 *)
  • PARI
    Vec((1-2*x-4*x^2)/(1-3*x-6*x^2)+O(x^99)) \\ Charles R Greathouse IV, Jan 11 2012

Formula

G.f.: (1 - 2*x - 4*x^2)/(1 - 3*x - 6*x^2).
a(n+1) = Sum_{k=0..n} A154929(n,k)*2^(n-k).
G.f.: Q(0)/6 +2/3 , where Q(k) = 1 + 1/(1 - x*(6*k+3 + 6*x )/( x*(6*k+6 + 6*x ) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Sep 21 2013
a(n) = A083858(n+1)/3, n>=1. - R. J. Mathar, Feb 06 2020

A155112 Triangle T(n,k), 0<=k<=n, read by rows given by [0,2,-1/2,-1/2,0,0,0,0,0,0,0,0,...] DELTA [1,0,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 3, 4, 1, 0, 5, 10, 6, 1, 0, 8, 22, 21, 8, 1, 0, 13, 45, 59, 36, 10, 1, 0, 21, 88, 147, 124, 55, 12, 1, 0, 34, 167, 339, 366, 225, 78, 14, 1, 0, 55, 310, 741, 976, 770, 370, 105, 16, 1, 0, 89, 566, 1557, 2422, 2337, 1443, 567, 136, 18, 1, 0, 144, 1020, 3174, 5696, 6505, 4920, 2485, 824, 171, 20, 1
Offset: 0

Views

Author

Philippe Deléham, Jan 20 2009

Keywords

Comments

A Fibonacci convolution triangle; Riordan array (1, x*(1+x)/(1-x-x^2)).

Examples

			Triangle begins:
  1;
  0,  1;
  0,  2,  1;
  0,  3,  4,  1;
  0,  5, 10,  6,  1;
  0,  8, 22, 21,  8,  1;
  0, 13, 45, 59, 36, 10, 1;
  ...
		

Crossrefs

Programs

  • Magma
    T:= func< n,k | n eq 0 select 1 else (&+[ Binomial(n-j,j)*Binomial(n-j,k)*k/(n-j): j in [0..Floor(n/2)]]) >;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 26 2021
    
  • Maple
    # Uses function PMatrix from A357368.
    PMatrix(10, n -> combinat:-fibonacci(n+1)); # Peter Luschny, Oct 19 2022
  • Mathematica
    T[n_, k_]:= If[n==0, 1, Sum[Binomial[n-j, j]*Binomial[n-j, k]*k/(n-j), {j, 0, Floor[n/2]}]];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 26 2021 *)
  • Sage
    def T(n,k): return 1 if n==0 else sum( binomial(n-j,j)*binomial(n-j,k)*k/(n-j) for j in (0..n//2) )
    flatten([[T(n,k) for k in [0..n]] for n in [0..12]]) # G. C. Greubel, Mar 26 2021

Formula

Recurrence: T(n+2,k+1) = T(n+1,k+1) + T(n+1,k) + T(n,k+1) + T(n,k).
Explicit formula: T(n,k) = Sum_{i=0..floor(n/2)} binomial(n-i, i)*binomial(n-i, k)*k/(n-i), for n > 0.
G.f.: (1-x-x^2)/(1-(1+y)*x-(1+y)*x^2). - Philippe Deléham, Feb 21 2012
Sum_{k=0..n} T(n,k)*x^(n-k) = A000012(n), A155020(n), A154964(n), A154968(n), A154996(n), A154997(n), A154999(n), A155000(n), A155001(n), A155017(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, respectively.
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A155020(n), A155116(n), A155117(n), A155119(n), A155127(n), A155130(n), A155132(n), A155144(n), A155157(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, respectively. - Philippe Deléham, Feb 21 2012
Sum_{k=0..n} T(n, k)*(m-1)^k = (1/m)*[n=0] - (m-1)*(i*sqrt(m))^(n-2)*ChebyshevU(n, -i*sqrt(m)/2). - G. C. Greubel, Mar 26 2021
Sum_{k=0..n} k * T(n,k) = A291385(n-1) for n>=1. - Alois P. Heinz, Sep 29 2022

Extensions

Typos in two terms corrected by Alois P. Heinz, Aug 08 2015

A154996 a(n) = 5*a(n-1) + 20*a(n-2), n>2 ; a(0)=1, a(1)=1, a(2)=9.

Original entry on oeis.org

1, 1, 9, 65, 505, 3825, 29225, 222625, 1697625, 12940625, 98655625, 752090625, 5733565625, 43709640625, 333219515625, 2540290390625, 19365842265625, 147635019140625, 1125491941015625, 8580160087890625, 65410639259765625
Offset: 0

Views

Author

Philippe Deléham, Jan 18 2009

Keywords

Comments

The sequences A155001, A155000, A154999, A154997 and A154996 have a common form: a(0)=a(1)=1, a(2)= 2*b+1, a(n) = (b+1)*(a(n-1) + b*a(n-2)), with b some constant. The generating function of these is (1 - b*x - b^2*x^2)/(1 - (b+1)*x - b*(1+b)*x^2). - R. J. Mathar, Jan 20 2009

Crossrefs

Programs

  • Magma
    I:=[1,9]; [1] cat [n le 2 select I[n] else 5*(Self(n-1) +4*Self(n-2)): n in [1..30]]; // G. C. Greubel, Apr 21 2021
    
  • Maple
    m:=30; S:=series( (1-4*x-16*x^2)/(1-5*x-20*x^2), x, m+1):
    seq(coeff(S, x, j), j=0..m); # G. C. Greubel, Apr 21 2021
  • Mathematica
    Join[{1},LinearRecurrence[{5,20},{1,9},20]] (* Harvey P. Dale, Jan 19 2012 *)
  • Sage
    def A154996_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1-4*x-16*x^2)/(1-5*x-20*x^2) ).list()
    A154996_list(30) # G. C. Greubel, Apr 21 2021

Formula

G.f.: (1 -4*x -16*x^2)/(1 -5*x -20*x^2).
a(n+1) = Sum_{k=0..n} A154929(n,k)*4^(n-k).

A154997 a(n) = 6*a(n-1) + 30*a(n-2), n>2; a(0)=1, a(1)=1, a(2)=11.

Original entry on oeis.org

1, 1, 11, 96, 906, 8316, 77076, 711936, 6583896, 60861456, 562685616, 5201957376, 48092312736, 444612597696, 4110444968256, 38001047740416, 351319635490176, 3247949245153536, 30027284535626496, 277602184568365056
Offset: 0

Views

Author

Philippe Deléham, Jan 18 2009

Keywords

Comments

The sequences A155001, A155000, A154999, A154997 and A154996 have a common form: a(0)=a(1)=1, a(2)= 2*b+1, a(n) = (b+1)*(a(n-1) + b*a(n-2)), with b some constant. The generating function of these is (1 - b*x - b^2*x^2)/(1 - (b+1)*x - b*(1+b)*x^2). - R. J. Mathar, Jan 20 2009

Crossrefs

Programs

  • Magma
    I:=[1,11]; [1] cat [n le 2 select I[n] else 6*(Self(n-1) +5*Self(n-2)): n in [1..30]]; // G. C. Greubel, Apr 21 2021
    
  • Maple
    m:=30; S:=series( (1-5*x-25*x^2)/(1-6*x-30*x^2), x, m+1):
    seq(coeff(S, x, j), j=0..m); # G. C. Greubel, Apr 21 2021
  • Mathematica
    Join[{1},LinearRecurrence[{6,30},{1,11},20]] (* Harvey P. Dale, Feb 07 2012 *)
  • Sage
    def A154996_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1-5*x-25*x^2)/(1-6*x-30*x^2) ).list()
    A154996_list(30) # G. C. Greubel, Apr 21 2021

Formula

G.f.: (1 -5*x -25*x^2)/(1 -6*x -30*x^2).
a(n+1) = Sum_{k=0..n} A154929(n,k)*5^(n-k).

A154999 a(n) = 7*a(n-1) + 42*a(n-2), n>2; a(0)=1, a(1)=1, a(2)=13.

Original entry on oeis.org

1, 1, 13, 133, 1477, 15925, 173509, 1883413, 20471269, 222402229, 2416608901, 26257155925, 285297665317, 3099884206069, 33681691385797, 365966976355477, 3976399872691813, 43205412115772725, 469446679463465221
Offset: 0

Views

Author

Philippe Deléham, Jan 18 2009

Keywords

Comments

The sequences A155001, A155000, A154999, A154997 and A154996 have a common form: a(0)=a(1)=1, a(2)= 2*b+1, a(n) = (b+1)*(a(n-1) + b*a(n-2)), with b some constant. The generating function of these is (1 - b*x - b^2*x^2)/(1 - (b+1)*x - b*(1+b)*x^2). - R. J. Mathar, Jan 20 2009

Crossrefs

Programs

  • Magma
    I:=[1,13]; [1] cat [n le 2 select I[n] else 7*(Self(n-1) +6*Self(n-2)): n in [1..30]]; // G. C. Greubel, Apr 20 2021
    
  • Mathematica
    LinearRecurrence[{7,42}, {1,1,13}, 31] (* G. C. Greubel, Apr 20 2021 *)
    CoefficientList[Series[(1-6x-36x^2)/(1-7x-42x^2),{x,0,20}],x] (* Harvey P. Dale, Jan 14 2022 *)
  • Sage
    def A154999_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1-6*x-36*x^2)/(1-7*x-42*x^2) ).list()
    A154999_list(30) # G. C. Greubel, Apr 20 2021

Formula

a(n+1) = Sum_{k=0..n} A154929(n,k)*6^(n-k).
G.f.: (1 - 6*x - 36*x^2)/(1 - 7*x - 42*x^2). - G. C. Greubel, Apr 20 2021

Extensions

More terms from Philippe Deléham, Jan 27 2009
Corrected by D. S. McNeil, Aug 20 2010

A155001 a(n) = 9*a(n-1) + 72*a(n-2), n > 2; a(0)=1, a(1)=1, a(2)=17.

Original entry on oeis.org

1, 1, 17, 225, 3249, 45441, 642897, 9057825, 127809009, 1802444481, 25424248977, 358594243425, 5057894117169, 71339832581121, 1006226869666257, 14192509772837025, 200180922571503729, 2823489006787799361
Offset: 0

Views

Author

Philippe Deléham, Jan 18 2009

Keywords

Comments

The sequences A155001, A155000, A154999, A154997 and A154996 have a common form: a(0)=a(1)=1, a(2)= 2*b+1, a(n) = (b+1)*(a(n-1) + b*a(n-2)), with b some constant. The generating function of these is (1 - b*x - b^2*x^2)/(1 - (b+1)*x - b*(1+b)*x^2). - R. J. Mathar, Jan 20 2009

Crossrefs

Programs

  • Magma
    I:=[1,17]; [1] cat [n le 2 select I[n] else 9*(Self(n-1) +8*Self(n-2)): n in [1..30]]; // G. C. Greubel, Apr 20 2021
    
  • Maple
    a[0] := 1: a[1] := 1: a[2] := 17: for n from 3 to 25 do a[n] := 9*a[n-1]+72*a[n-2] end do: seq(a[n], n = 0 .. 17); # Emeric Deutsch, Jan 21 2009
  • Mathematica
    LinearRecurrence[{9,72},{1,1,17},20] (* Harvey P. Dale, Apr 26 2016 *)
  • Sage
    def A155001_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1-8*x-64*x^2)/(1-9*x-72*x^2) ).list()
    A155001_list(30) # G. C. Greubel, Apr 20 2021

Formula

a(n+1) = Sum_{k=0..n} A154929(n,k)*8^(n-k).
G.f.: (1 - 8*x - 64*x^2)/(1 - 9*x - 72*x^2). - G. C. Greubel, Apr 20 2021

Extensions

Corrected by Philippe Deléham, Jan 21 2009
Corrected and extended by Emeric Deutsch and R. J. Mathar, Jan 21 2009

A154968 a(n) = 4*a(n-1) + 12*a(n-2), n>2 with a(0)=1, a(1)=1, a(2)=7.

Original entry on oeis.org

1, 1, 7, 40, 244, 1456, 8752, 52480, 314944, 1889536, 11337472, 68024320, 408146944, 2448879616, 14693281792, 88159682560, 528958111744, 3173748637696, 19042491891712, 114254951219200, 685529707577344
Offset: 0

Views

Author

Philippe Deléham, Jan 18 2009

Keywords

Crossrefs

Cf. A154929.

Programs

  • Magma
    [n eq 0 select 1 else (6^(n+1) -(-2)^(n+1))/32: n in [0..40]]; // G. C. Greubel, Mar 01 2021
  • Mathematica
    LinearRecurrence[{4,12}, {1,1,7}, 40] (* G. C. Greubel, Mar 01 2021 *)
  • SageMath
    [1]+[(6^(n+1) - (-2)^(n+1))/32 for n in [1..40]] # G. C. Greubel, Mar 01 2021
    

Formula

16*a(n) = 3*6^n +(-1)^n*2^n, n>0. - R. J. Mathar, Sep 03 2013
From G. C. Greubel, Mar 01 2021: (Start)
a(n) = (6^(n+1) - (-2)^(n+1))/32 + (3/4)*[n=0].
E.g.f.: (exp(-2*x) + 3*exp(6*x))/16. (End)

A155017 a(n) = 10*a(n-1) + 90*a(n-2), n>2 ; a(0)=1, a(1)=1, a(2)=19 .

Original entry on oeis.org

1, 1, 19, 280, 4510, 70300, 1108900, 17416000, 273961000, 4307050000, 67726990000, 1064904400000, 16744473100000, 263286127000000, 4139863849000000, 65094389920000000, 1023531645610000000
Offset: 0

Views

Author

Philippe Deléham, Jan 19 2009

Keywords

Comments

10^(floor((n - 2)/2)) | a(n) for n>=1. - G. C. Greubel, Dec 30 2017

Programs

  • Magma
    I:=[1,1,19]; [1] cat [n le 2 select I[n] else 10*Self(n-1) + 90*Self(n-2): n in [1..30]]; // G. C. Greubel, Dec 30 2017
  • Mathematica
    Join[{1},LinearRecurrence[{10,90},{1,19},20]] (* Harvey P. Dale, Oct 10 2012 *)
    CoefficientList[Series[(1 - 9*x - 81*x^2)/(1 - 10*x - 90*x^2), {x,0,50}], x] (* G. C. Greubel, Dec 30 2017 *)
  • PARI
    x='x+O('x^30); Vec((1-9*x-81*x^2)/(1-10*x-90*x^2)) \\ G. C. Greubel, Dec 30 2017
    

Formula

G.f.: (1-9*x-81*x^2)/(1-10*x-90*x^2).
a(n+1) = Sum_{k=0..n} A154929(n,k)*9^(n-k).
Showing 1-10 of 10 results.