cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A155112 Triangle T(n,k), 0<=k<=n, read by rows given by [0,2,-1/2,-1/2,0,0,0,0,0,0,0,0,...] DELTA [1,0,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 3, 4, 1, 0, 5, 10, 6, 1, 0, 8, 22, 21, 8, 1, 0, 13, 45, 59, 36, 10, 1, 0, 21, 88, 147, 124, 55, 12, 1, 0, 34, 167, 339, 366, 225, 78, 14, 1, 0, 55, 310, 741, 976, 770, 370, 105, 16, 1, 0, 89, 566, 1557, 2422, 2337, 1443, 567, 136, 18, 1, 0, 144, 1020, 3174, 5696, 6505, 4920, 2485, 824, 171, 20, 1
Offset: 0

Views

Author

Philippe Deléham, Jan 20 2009

Keywords

Comments

A Fibonacci convolution triangle; Riordan array (1, x*(1+x)/(1-x-x^2)).

Examples

			Triangle begins:
  1;
  0,  1;
  0,  2,  1;
  0,  3,  4,  1;
  0,  5, 10,  6,  1;
  0,  8, 22, 21,  8,  1;
  0, 13, 45, 59, 36, 10, 1;
  ...
		

Crossrefs

Programs

  • Magma
    T:= func< n,k | n eq 0 select 1 else (&+[ Binomial(n-j,j)*Binomial(n-j,k)*k/(n-j): j in [0..Floor(n/2)]]) >;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 26 2021
    
  • Maple
    # Uses function PMatrix from A357368.
    PMatrix(10, n -> combinat:-fibonacci(n+1)); # Peter Luschny, Oct 19 2022
  • Mathematica
    T[n_, k_]:= If[n==0, 1, Sum[Binomial[n-j, j]*Binomial[n-j, k]*k/(n-j), {j, 0, Floor[n/2]}]];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 26 2021 *)
  • Sage
    def T(n,k): return 1 if n==0 else sum( binomial(n-j,j)*binomial(n-j,k)*k/(n-j) for j in (0..n//2) )
    flatten([[T(n,k) for k in [0..n]] for n in [0..12]]) # G. C. Greubel, Mar 26 2021

Formula

Recurrence: T(n+2,k+1) = T(n+1,k+1) + T(n+1,k) + T(n,k+1) + T(n,k).
Explicit formula: T(n,k) = Sum_{i=0..floor(n/2)} binomial(n-i, i)*binomial(n-i, k)*k/(n-i), for n > 0.
G.f.: (1-x-x^2)/(1-(1+y)*x-(1+y)*x^2). - Philippe Deléham, Feb 21 2012
Sum_{k=0..n} T(n,k)*x^(n-k) = A000012(n), A155020(n), A154964(n), A154968(n), A154996(n), A154997(n), A154999(n), A155000(n), A155001(n), A155017(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, respectively.
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A155020(n), A155116(n), A155117(n), A155119(n), A155127(n), A155130(n), A155132(n), A155144(n), A155157(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, respectively. - Philippe Deléham, Feb 21 2012
Sum_{k=0..n} T(n, k)*(m-1)^k = (1/m)*[n=0] - (m-1)*(i*sqrt(m))^(n-2)*ChebyshevU(n, -i*sqrt(m)/2). - G. C. Greubel, Mar 26 2021
Sum_{k=0..n} k * T(n,k) = A291385(n-1) for n>=1. - Alois P. Heinz, Sep 29 2022

Extensions

Typos in two terms corrected by Alois P. Heinz, Aug 08 2015

A154997 a(n) = 6*a(n-1) + 30*a(n-2), n>2; a(0)=1, a(1)=1, a(2)=11.

Original entry on oeis.org

1, 1, 11, 96, 906, 8316, 77076, 711936, 6583896, 60861456, 562685616, 5201957376, 48092312736, 444612597696, 4110444968256, 38001047740416, 351319635490176, 3247949245153536, 30027284535626496, 277602184568365056
Offset: 0

Views

Author

Philippe Deléham, Jan 18 2009

Keywords

Comments

The sequences A155001, A155000, A154999, A154997 and A154996 have a common form: a(0)=a(1)=1, a(2)= 2*b+1, a(n) = (b+1)*(a(n-1) + b*a(n-2)), with b some constant. The generating function of these is (1 - b*x - b^2*x^2)/(1 - (b+1)*x - b*(1+b)*x^2). - R. J. Mathar, Jan 20 2009

Crossrefs

Programs

  • Magma
    I:=[1,11]; [1] cat [n le 2 select I[n] else 6*(Self(n-1) +5*Self(n-2)): n in [1..30]]; // G. C. Greubel, Apr 21 2021
    
  • Maple
    m:=30; S:=series( (1-5*x-25*x^2)/(1-6*x-30*x^2), x, m+1):
    seq(coeff(S, x, j), j=0..m); # G. C. Greubel, Apr 21 2021
  • Mathematica
    Join[{1},LinearRecurrence[{6,30},{1,11},20]] (* Harvey P. Dale, Feb 07 2012 *)
  • Sage
    def A154996_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1-5*x-25*x^2)/(1-6*x-30*x^2) ).list()
    A154996_list(30) # G. C. Greubel, Apr 21 2021

Formula

G.f.: (1 -5*x -25*x^2)/(1 -6*x -30*x^2).
a(n+1) = Sum_{k=0..n} A154929(n,k)*5^(n-k).

A154999 a(n) = 7*a(n-1) + 42*a(n-2), n>2; a(0)=1, a(1)=1, a(2)=13.

Original entry on oeis.org

1, 1, 13, 133, 1477, 15925, 173509, 1883413, 20471269, 222402229, 2416608901, 26257155925, 285297665317, 3099884206069, 33681691385797, 365966976355477, 3976399872691813, 43205412115772725, 469446679463465221
Offset: 0

Views

Author

Philippe Deléham, Jan 18 2009

Keywords

Comments

The sequences A155001, A155000, A154999, A154997 and A154996 have a common form: a(0)=a(1)=1, a(2)= 2*b+1, a(n) = (b+1)*(a(n-1) + b*a(n-2)), with b some constant. The generating function of these is (1 - b*x - b^2*x^2)/(1 - (b+1)*x - b*(1+b)*x^2). - R. J. Mathar, Jan 20 2009

Crossrefs

Programs

  • Magma
    I:=[1,13]; [1] cat [n le 2 select I[n] else 7*(Self(n-1) +6*Self(n-2)): n in [1..30]]; // G. C. Greubel, Apr 20 2021
    
  • Mathematica
    LinearRecurrence[{7,42}, {1,1,13}, 31] (* G. C. Greubel, Apr 20 2021 *)
    CoefficientList[Series[(1-6x-36x^2)/(1-7x-42x^2),{x,0,20}],x] (* Harvey P. Dale, Jan 14 2022 *)
  • Sage
    def A154999_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1-6*x-36*x^2)/(1-7*x-42*x^2) ).list()
    A154999_list(30) # G. C. Greubel, Apr 20 2021

Formula

a(n+1) = Sum_{k=0..n} A154929(n,k)*6^(n-k).
G.f.: (1 - 6*x - 36*x^2)/(1 - 7*x - 42*x^2). - G. C. Greubel, Apr 20 2021

Extensions

More terms from Philippe Deléham, Jan 27 2009
Corrected by D. S. McNeil, Aug 20 2010

A155000 a(n) = 8*a(n-1) + 56*a(n-2), n > 2; a(0)=1, a(1)=1, a(2)=15.

Original entry on oeis.org

1, 1, 15, 176, 2248, 27840, 348608, 4347904, 54305280, 677924864, 8464494592, 105679749120, 1319449690112, 16473663471616, 205678490419200, 2567953077764096, 32061620085587968, 400298333039493120
Offset: 0

Views

Author

Philippe Deléham, Jan 18 2009

Keywords

Comments

The sequences A155001, A155000, A154999, A154997 and A154996 have a common form: a(0)=a(1)=1, a(2)= 2*b+1, a(n) = (b+1)*(a(n-1) + b*a(n-2)), with b some constant. The generating function of these is (1 - b*x - b^2*x^2)/(1 - (b+1)*x - b*(1+b)*x^2). - R. J. Mathar, Jan 20 2009

Crossrefs

Programs

  • Magma
    I:=[1,15]; [1] cat [n le 2 select I[n] else 8*(Self(n-1) +7*Self(n-2)): n in [1..30]]; // G. C. Greubel, Apr 20 2021
    
  • Maple
    m:=30; S:=series( (1-7*x-49*x^2)/(1-8*x-56*x^2), x, m+1):
    seq(coeff(S, x, j), j=0..m); # G. C. Greubel, Apr 20 2021
  • Mathematica
    Join[{1},LinearRecurrence[{8,56},{1,15},20]] (* Harvey P. Dale, Dec 11 2012 *)
  • Sage
    def A155000_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1-7*x-49*x^2)/(1-8*x-56*x^2) ).list()
    A155000_list(30) # G. C. Greubel, Apr 20 2021

Formula

a(n) = Sum_{k=0..n} A155112(n,k)*7^(n-k). - Philippe Deléham, Jan 27 2009
G.f.: 1 + x*(1+7*x)/(1-8*x-56*x^2). - Harvey P. Dale, Dec 11 2012

Extensions

More terms from Philippe Deléham, Jan 27 2009

A155001 a(n) = 9*a(n-1) + 72*a(n-2), n > 2; a(0)=1, a(1)=1, a(2)=17.

Original entry on oeis.org

1, 1, 17, 225, 3249, 45441, 642897, 9057825, 127809009, 1802444481, 25424248977, 358594243425, 5057894117169, 71339832581121, 1006226869666257, 14192509772837025, 200180922571503729, 2823489006787799361
Offset: 0

Views

Author

Philippe Deléham, Jan 18 2009

Keywords

Comments

The sequences A155001, A155000, A154999, A154997 and A154996 have a common form: a(0)=a(1)=1, a(2)= 2*b+1, a(n) = (b+1)*(a(n-1) + b*a(n-2)), with b some constant. The generating function of these is (1 - b*x - b^2*x^2)/(1 - (b+1)*x - b*(1+b)*x^2). - R. J. Mathar, Jan 20 2009

Crossrefs

Programs

  • Magma
    I:=[1,17]; [1] cat [n le 2 select I[n] else 9*(Self(n-1) +8*Self(n-2)): n in [1..30]]; // G. C. Greubel, Apr 20 2021
    
  • Maple
    a[0] := 1: a[1] := 1: a[2] := 17: for n from 3 to 25 do a[n] := 9*a[n-1]+72*a[n-2] end do: seq(a[n], n = 0 .. 17); # Emeric Deutsch, Jan 21 2009
  • Mathematica
    LinearRecurrence[{9,72},{1,1,17},20] (* Harvey P. Dale, Apr 26 2016 *)
  • Sage
    def A155001_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1-8*x-64*x^2)/(1-9*x-72*x^2) ).list()
    A155001_list(30) # G. C. Greubel, Apr 20 2021

Formula

a(n+1) = Sum_{k=0..n} A154929(n,k)*8^(n-k).
G.f.: (1 - 8*x - 64*x^2)/(1 - 9*x - 72*x^2). - G. C. Greubel, Apr 20 2021

Extensions

Corrected by Philippe Deléham, Jan 21 2009
Corrected and extended by Emeric Deutsch and R. J. Mathar, Jan 21 2009
Showing 1-5 of 5 results.