cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A154945 Decimal expansion of Sum_{p} 1/(p^2-1), summed over the primes p = A000040.

Original entry on oeis.org

5, 5, 1, 6, 9, 3, 2, 9, 7, 6, 5, 6, 9, 9, 9, 1, 8, 4, 4, 3, 9, 7, 3, 1, 0, 2, 3, 9, 7, 1, 3, 4, 3, 5, 7, 8, 1, 3, 1, 5, 0, 0, 3, 7, 7, 7, 7, 8, 6, 2, 8, 2, 5, 2, 2, 3, 0, 6, 1, 7, 3, 3, 4, 0, 5, 9, 5, 6, 5, 5, 9, 7, 6, 4, 1, 0, 7, 0, 6, 7, 1, 0, 7, 7, 7, 5, 0, 9, 8, 3, 1, 6, 8, 2, 7, 7, 9, 6, 0, 7, 2, 5, 0, 5, 8
Offset: 0

Views

Author

R. J. Mathar, Jan 17 2009

Keywords

Comments

By geometric series expansion, the same as the sum over the prime zeta function at even arguments, P(2i), i=1,2,....
(Pi^2/6)*density of A190641, the numbers divisible by exactly one prime with exponent greater than 1. - Charles R Greathouse IV, Aug 02 2016

Examples

			0.551693297656999184439731023971343578131500377778628252230...
		

Crossrefs

Programs

  • Mathematica
    digits = 105; m0 = 2 digits; Clear[rd]; rd[m_] := rd[m] = RealDigits[delta1 = Sum[PrimeZetaP[2n], {n, 1, m}] , 10, digits][[1]]; rd[m0]; rd[m = 2m0];
    While[rd[m] != rd[m-m0], Print[m]; m = m+m0]; Print[N[delta1, digits]]; rd[m] (* Jean-François Alcover, Sep 11 2015, updated Mar 16 2019 *)
  • PARI
    eps()=2.>>bitprecision(1.)
    primezeta(s)=my(t=s*log(2)); sum(k=1, lambertw(t/eps())\t, moebius(k)/k*log(abs(zeta(k*s))))
    sumpos(n=1,primezeta(2*n)) \\ Charles R Greathouse IV, Aug 02 2016
    
  • PARI
    sumeulerrat(1/(p^2-1)) \\ Amiram Eldar, Mar 18 2021

Formula

Equals Sum_{k>=1} 1/A084920(k) = Sum_{i>=1} P(2i) = A085548+A085964+A085966+A085968+... = A152447+A085548-A154932.
Equals Sum_{k>=2} 1/A000961(k)^2 = Sum_{k>=2} 1/A056798(k). - Amiram Eldar, Sep 21 2020
Equals (A136141 + A179119)/2. - Artur Jasinski, Mar 31 2025

Extensions

More digits from Jean-François Alcover, Sep 11 2015

A284748 Decimal expansion of the sum of reciprocals of composite powers.

Original entry on oeis.org

2, 2, 6, 8, 4, 3, 3, 3, 0, 9, 5, 0, 2, 0, 4, 8, 7, 2, 1, 3, 5, 6, 3, 2, 5, 4, 0, 1, 4, 4, 0, 5, 7, 6, 0, 4, 3, 8, 1, 2, 5, 8, 6, 6, 3, 9, 1, 6, 8, 1, 3, 9, 5, 1, 6, 8, 8, 9, 9, 3, 9, 3, 2, 6, 4, 3, 2, 9, 0, 9, 7, 1, 5, 1, 0, 7, 6, 6, 6, 0, 2, 1, 6, 6, 2, 0, 1, 2, 4, 1, 1, 7, 6, 6, 7, 9, 1, 8, 1, 6, 7, 1, 0, 6, 2, 1
Offset: 0

Views

Author

Terry D. Grant, Apr 01 2017

Keywords

Examples

			Equals 1/(4*3)+1/(6*5)+1/(8*7)+1/(9*8)+1/(10*9)+...
= 0.226843330950204872135632540144057604...
		

Crossrefs

Decimal expansion of the sum of reciprocal powers: A136141 (primes), A154945 (primes at even powers), A152447 (semiprimes), A154932 (squarefree semiprimes).
Decimal expansion of the 'nonprime zeta function': A275647 (at 2), A278419 (at 3).

Programs

  • Mathematica
    RealDigits[ NSum[Zeta[n]-1-PrimeZetaP[n], {n, 2, Infinity}], 10, 105] [[1]]
  • PARI
    1 - sumeulerrat(1/(p*(p-1))) \\ Amiram Eldar, Mar 18 2021

Formula

Equals Sum_{n>=1} 1/A002808(n)^(n+1) = (A275647 - 1) + (A278419 - 1) + ...
Equals Sum_{n>=1} 1/A002808(n)*(A002808(n)-1).
Equals Sum_{n>=2} (Zeta(n) - PrimeZeta(n) - 1) = Sum_{n>=2} CompositeZeta(n).
Equals 1 - A136141.

Extensions

More digits from Vaclav Kotesovec, Jan 13 2021
Showing 1-2 of 2 results.