cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A154948 Riordan array ((1+x)/(1-x^2)^2, x(1+x)/(1-x)).

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 2, 6, 5, 1, 3, 10, 14, 7, 1, 3, 15, 30, 26, 9, 1, 4, 21, 55, 70, 42, 11, 1, 4, 28, 91, 155, 138, 62, 13, 1, 5, 36, 140, 301, 363, 242, 86, 15, 1, 5, 45, 204, 532, 819, 743, 390, 114, 17, 1, 6, 55, 285, 876, 1652, 1925, 1375, 590, 146, 19, 1
Offset: 0

Views

Author

Paul Barry, Jan 17 2009

Keywords

Comments

Row sums are A113300(n+1). Diagonal sums are A154949.
Product of A154950 and A007318.

Examples

			Triangle begins
  1;
  1,  1;
  2,  3,  1;
  2,  6,  5,  1;
  3, 10, 14,  7,  1;
  3, 15, 30, 26,  9,  1;
  4, 21, 55, 70, 42, 11, 1;
		

Programs

  • Magma
    [ (&+[Binomial(k-1, j)*Binomial(n-j+1, k+1): j in [0..n+1]]): k in [0..n], n in [0..10]]; // G. C. Greubel, Feb 18 2020
    
  • Maple
    seq(seq( add(binomial(k-1, j)*binomial(n-j+1, k+1), j=0..n+1), k=0..n), n=0..10); # G. C. Greubel, Feb 18 2020
  • Mathematica
    Table[Binomial[n+1, k+1]*Hypergeometric2F1[-n+k, -k+1, -n-1, -1], {n, 0, 5}, {k, 0, n}]//Flatten (* G. C. Greubel, Feb 18 2020 *)
  • Sage
    [[ sum(binomial(k-1, j)*binomial(n-j+1, k+1) for j in (0..n+1)) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Feb 18 2020

Formula

Number triangle T(n,k) = Sum_{j=0..n+1} C(n+1-j,k+1)*C(k-1,j).
T(n, k) = binomial(n+1,k+1)*2F1(-(n-k), -(k-1); -(n+1); -1). - G. C. Greubel, Feb 18 2020

Extensions

a(45)=0 removed by Georg Fischer, Feb 18 2020