cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A154949 Diagonal sums of Riordan array A154948.

Original entry on oeis.org

1, 1, 3, 5, 10, 18, 34, 62, 115, 211, 389, 715, 1316, 2420, 4452, 8188, 15061, 27701, 50951, 93713, 172366, 317030, 583110, 1072506, 1972647, 3628263, 6673417, 12274327, 22576008, 41523752, 76374088, 140473848, 258371689, 475219625
Offset: 0

Views

Author

Paul Barry, Jan 17 2009

Keywords

Programs

  • Mathematica
    a=0; b=0; c=0; lst={}; Do[z=a+b+c+1; AppendTo[lst,z]; a=b; b=c; c=z; z=a+b+c; AppendTo[lst,z]; a=b; b=c; c=z,{n,5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Feb 17 2010 *)
    LinearRecurrence[{1,2,0,-1,-1},{1,1,3,5,10},40] (* Harvey P. Dale, Nov 13 2022 *)

Formula

G.f.: 1/((1-x^2)(1 - x - x^2 - x^3)).
a(n) = sum{k=0..floor(n/2), sum{j=0..n-k+1, C(n-k+1-j,k+1)C(k-1,j)}}.
a(n) = -A000035(n)/2 + A001590(n+4)/2. - R. J. Mathar, Oct 25 2012

A048776 First partial sums of A048739; second partial sums of A000129.

Original entry on oeis.org

1, 4, 12, 32, 81, 200, 488, 1184, 2865, 6924, 16724, 40384, 97505, 235408, 568336, 1372096, 3312545, 7997204, 19306972, 46611168, 112529329, 271669848, 655869048, 1583407968, 3822685009, 9228778012, 22280241060, 53789260160, 129858761409, 313506783008
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = 2*a(n-1) + a(n-2) + n + 1; a(0)=1, a(1)=4.
a(n) = (((7/2 + (5/2)*sqrt(2))*(1+sqrt(2))^n - (7/2 - (5/2)*sqrt(2))*(1-sqrt(2))^n)/2*sqrt(2)) - (n+3)/2.
a(n) = (A000129(n+3) - (n+3))/2 = Sum_{j} A047662(n-j+1, j+1). - Henry Bottomley, Jul 09 2001
From R. J. Mathar, Feb 06 2010: (Start)
a(n) = 4*a(n-1) - 4*a(n-2) + a(n-4).
G.f.: -1/((x^2+2*x-1) * (x-1)^2). (End)
Define an array with m(n,1)=1 and m(1,k) = k*(k+1)/2 for n=1,2,3,... The interior terms are m(n,k) = m(n,k-1) + m(n-1,k-1) + m(n-1,k). The sum of the terms in each antidiagonal=a(n). - J. M. Bergot, Dec 01 2012 [This is A154948 without the first column. The diagonal is m(n,n) = A161731(n-1). R. J. Mathar, Dec 06 2012]
E.g.f.: exp(x)*(10*cosh(sqrt(2)*x) + 7*sqrt(2)*sinh(sqrt(2)*x) - 2*(3 + x))/4. - Stefano Spezia, May 13 2023

Extensions

More terms from Harvey P. Dale, Aug 27 2014

A154950 Riordan array (1/(1-x^4), x(1+x)/(1+x^2)).

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, -1, 2, 1, 1, -1, -1, 3, 1, 0, 2, -4, 0, 4, 1, 0, 2, 2, -8, 2, 5, 1, 0, -2, 8, -2, -12, 5, 6, 1, 1, -2, -2, 18, -12, -15, 9, 7, 1, 0, 3, -12, 8, 28, -29, -16, 14, 8, 1, 0, 3, 3, -32, 38, 31, -53, -14, 20, 9, 1
Offset: 0

Views

Author

Paul Barry, Jan 17 2009

Keywords

Comments

Row sums are A008619. Diagonal sums are A103221. Equal to A154948 times inverse of A007318.

Examples

			Triangle begins
1,
0, 1,
0, 1, 1,
0, -1, 2, 1,
1, -1, -1, 3, 1,
0, 2, -4, 0, 4, 1,
0, 2, 2, -8, 2, 5, 1,
0, -2, 8, -2, -12, 5, 6, 1,
1, -2, -2, 18, -12, -15, 9, 7, 1
		

Formula

Triangle T(n,k)=sum{i=0..n, sum{j=0..n+1, C(n+1-j,i+1)*C(i-1,j)}*(-1)^(i-k)*C(i,k)}.
Showing 1-3 of 3 results.