A154966 Primes p such that the concatenation of p and prime(p) is composite.
3, 5, 7, 11, 13, 19, 29, 31, 37, 43, 47, 53, 59, 67, 73, 79, 89, 97, 101, 103, 107, 109, 113, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317
Offset: 1
Examples
The concatenation of prime 3 and the third prime, 5, is the composite 35, hence 3 is in the sequence. The concatenation of prime 29 and the 29th prime, 109, is the composite 29109 = 3*31*313, hence 29 is in the sequence.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Magma
[ p: p in PrimesUpTo(320) | not IsPrime(StringToInteger(IntegerToString(p) cat IntegerToString(NthPrime(p)))) ];
-
Mathematica
Select[Prime[Range[80]],CompositeQ[FromDigits[Flatten[IntegerDigits[ {#,Prime[ #]}]]]]&] (* Harvey P. Dale, Jan 07 2016 *)
Extensions
Edited and extended beyond a(6) by Klaus Brockhaus, Jan 20 2009