A155043 a(0)=0; for n >= 1, a(n) = 1 + a(n-d(n)), where d(n) is the number of divisors of n (A000005).
0, 1, 1, 2, 2, 3, 2, 4, 3, 3, 3, 4, 3, 5, 4, 5, 5, 6, 4, 7, 5, 7, 5, 8, 6, 6, 6, 9, 6, 10, 6, 11, 7, 11, 7, 12, 10, 13, 8, 13, 8, 14, 8, 15, 9, 14, 9, 15, 9, 10, 10, 16, 10, 17, 10, 17, 10, 18, 11, 19, 10, 20, 12, 19, 19, 21, 12, 22, 13, 22, 13, 23, 11, 24, 14, 23, 14, 25, 14, 26, 14, 15, 15
Offset: 0
Links
- Antti Karttunen, Table of n, a(n) for n = 0..124340
- B. Balamohan, A. Kuznetsov and S. Tanny, On the behavior of a variant of Hofstadter's Q-sequence, J. Integer Sequences, Vol. 10 (2007), #07.7.1.
- Antti Karttunen, Graph plotted with OEIS Plot script up to n=10000
- John A. Pelesko, Generalizing the Conway-Hofstadter $10,000 Sequence, Journal of Integer Sequences, Vol. 7 (2004), Article 04.3.5.
Crossrefs
Cf. A261089 (positions of records, i.e., the first occurrence of n), A262503 (the last occurrence), A262505 (their difference), A263082.
Cf. A262518, A262519 (bisections, compare their scatter plots), A262521 (where the latter is less than the former).
Cf. A262507 (number of times n occurs in total), A262508 (values occurring only once), A262509 (their indices).
Cf. A263265 (nonnegative integers arranged by the magnitude of a(n)).
Programs
-
Haskell
import Data.List (genericIndex) a155043 n = genericIndex a155043_list n a155043_list = 0 : map ((+ 1) . a155043) a049820_list -- Reinhard Zumkeller, Nov 27 2015
-
Maple
with(numtheory): a := proc (n) if n = 0 then 0 else 1+a(n-tau(n)) end if end proc: seq(a(n), n = 0 .. 90); # Emeric Deutsch, Jan 26 2009
-
Mathematica
a[0] = 0; a[n_] := a[n] = 1 + a[n - DivisorSigma[0, n]]; Table[a@n, {n, 0, 82}] (* Michael De Vlieger, Sep 24 2015 *)
-
PARI
uplim = 110880; \\ = A002182(30). v155043 = vector(uplim); v155043[1] = 1; v155043[2] = 1; for(i=3, uplim, v155043[i] = 1 + v155043[i-numdiv(i)]); A155043 = n -> if(!n,n,v155043[n]); for(n=0, uplim, write("b155043.txt", n, " ", A155043(n))); \\ Antti Karttunen, Sep 23 2015
-
Python
from sympy import divisor_count as d def a(n): return 0 if n==0 else 1 + a(n - d(n)) print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 03 2017
-
Scheme
(definec (A155043 n) (if (zero? n) n (+ 1 (A155043 (A049820 n))))) ;; Antti Karttunen, Sep 23 2015
Formula
Extensions
Extended by Emeric Deutsch, Jan 26 2009
Name edited by Antti Karttunen, Sep 23 2015
Comments