cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A155052 Image of symmetric Catalan based triangle A155050 under ((1+x)/(1-x),x)^{-1}.

Original entry on oeis.org

1, -1, 1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 2, -1, 1, -1, 1, -2, 2, -1, 1, 1, -1, 2, 1, 2, -1, 1, -1, 1, -2, -1, 1, 2, -1, 1, 1, -1, 2, 1, 8, 1, 2, -1, 1, -1, 1, -2, -1, -8, 8, 1, 2, -1, 1, 1, -1, 2, 1, 8, 20, 8, 1, 2, -1, 1
Offset: 0

Views

Author

Paul Barry, Jan 19 2009

Keywords

Comments

Row sums are aerated Catalan numbers (A000108).

Examples

			Triangle begins
1,
-1, 1,
1, -1, 1,
-1, 1, -1, 1,
1, -1, 2, -1, 1,
-1, 1, -2, 2, -1, 1,
1, -1, 2, 1, 2, -1, 1,
-1, 1, -2, -1, 1, 2, -1, 1,
1, -1, 2, 1, 8, 1, 2, -1, 1,
-1, 1, -2, -1, -8, 8, 1, 2, -1, 1,
1, -1, 2, 1, 8, 20, 8, 1, 2, -1, 1
		

A155051 Expansion of c(x^2)*(1+x)/(1-x), c(x) the g.f. of A000108.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 13, 18, 32, 46, 88, 130, 262, 394, 823, 1252, 2682, 4112, 8974, 13836, 30632, 47428, 106214, 165000, 373012, 581024, 1323924, 2066824, 4741264, 7415704, 17110549, 26805394, 62163064, 97520734, 227165524
Offset: 0

Views

Author

Paul Barry, Jan 19 2009

Keywords

Comments

Row sums of A155050.
Conjecture: A000975(n) = A264784(a(n-1)) for n > 0. - Reinhard Zumkeller, Dec 04 2015

Crossrefs

Programs

  • Mathematica
    A155051[n_] := 2*Sum[CatalanNumber[k/2]*(1 + (-1)^k)/2, {k, 0, n}] -
    CatalanNumber[n/2]*(1 + (-1)^n)/2; Table[A155051[n], {n, 0, 50}] (* G. C. Greubel, Sep 30 2017 *)

Formula

a(n) = 2*Sum_{k=0..n,} ( C(k/2)*(1+(-1)^k)/2 ) - C(n/2)*(1+(-1)^n)/2, C(n) = A000108;
a(n) = (C(n/2) + 2*Sum_{k=0..(n/2-1), C(k)})*(1+(-1)^n)/2 + Sum_{k=0..n/2, C(k)}*(1-(-1)^n), C(n) = A000108.
Conjecture: (n+2)*a(n) -2*a(n-1) +(-5*n+4)*a(n-2) +8*a(n-3) +4*(n-3)*a(n-4)=0. - R. J. Mathar, Feb 05 2015
Conjecture: -(n+2)*(n-3)*a(n) +(n^2-n-10)*a(n-1) +4*(n^2-4*n+5)*a(n-2) -4*(n-2)^2*a(n-3)=0. - R. J. Mathar, Feb 05 2015
Showing 1-2 of 2 results.