A155051 Expansion of c(x^2)*(1+x)/(1-x), c(x) the g.f. of A000108.
1, 2, 3, 4, 6, 8, 13, 18, 32, 46, 88, 130, 262, 394, 823, 1252, 2682, 4112, 8974, 13836, 30632, 47428, 106214, 165000, 373012, 581024, 1323924, 2066824, 4741264, 7415704, 17110549, 26805394, 62163064, 97520734, 227165524
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
A155051[n_] := 2*Sum[CatalanNumber[k/2]*(1 + (-1)^k)/2, {k, 0, n}] - CatalanNumber[n/2]*(1 + (-1)^n)/2; Table[A155051[n], {n, 0, 50}] (* G. C. Greubel, Sep 30 2017 *)
Formula
a(n) = 2*Sum_{k=0..n,} ( C(k/2)*(1+(-1)^k)/2 ) - C(n/2)*(1+(-1)^n)/2, C(n) = A000108;
a(n) = (C(n/2) + 2*Sum_{k=0..(n/2-1), C(k)})*(1+(-1)^n)/2 + Sum_{k=0..n/2, C(k)}*(1-(-1)^n), C(n) = A000108.
Conjecture: (n+2)*a(n) -2*a(n-1) +(-5*n+4)*a(n-2) +8*a(n-3) +4*(n-3)*a(n-4)=0. - R. J. Mathar, Feb 05 2015
Conjecture: -(n+2)*(n-3)*a(n) +(n^2-n-10)*a(n-1) +4*(n^2-4*n+5)*a(n-2) -4*(n-2)^2*a(n-3)=0. - R. J. Mathar, Feb 05 2015
Comments