A155097 Numbers k such that k^2 == -1 (mod 37).
6, 31, 43, 68, 80, 105, 117, 142, 154, 179, 191, 216, 228, 253, 265, 290, 302, 327, 339, 364, 376, 401, 413, 438, 450, 475, 487, 512, 524, 549, 561, 586, 598, 623, 635, 660, 672, 697, 709, 734, 746, 771, 783, 808, 820, 845, 857, 882, 894, 919, 931, 956, 968
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Programs
-
Mathematica
LinearRecurrence[{1,1,-1},{6,31,43},100] (* Vincenzo Librandi, Feb 29 2012 *) Select[Range[1000],PowerMod[#,2,37]==36&] (* Harvey P. Dale, May 06 2012 *) CoefficientList[Series[(6 + 25 x + 6 x^2)/((1 + x) (1 - x)^2), {x, 0, 30}], x] (* Vincenzo Librandi, May 03 2014 *)
-
PARI
A155097(n)=n\2*37-6*(-1)^n /* M. F. Hasler, Jun 16 2010 */
Formula
From M. F. Hasler, Jun 16 2010: (Start)
a(n) = 6*(-1)^(n+1) + 37*floor(n/2).
a(n) = a(n-2) + 37 for all n > 2. (End)
G.f.: x*(6 + 25*x + 6*x^2)/((1 + x)*(1 - x)^2). - Vincenzo Librandi, May 03 2014
Sum_{n>=1} (-1)^(n+1)/a(n) = cot(6*Pi/37)*Pi/37. - Amiram Eldar, Feb 26 2023
Extensions
Terms checked, a(28) corrected, and minor edits by M. F. Hasler, Jun 16 2010
Comments