cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A155097 Numbers k such that k^2 == -1 (mod 37).

Original entry on oeis.org

6, 31, 43, 68, 80, 105, 117, 142, 154, 179, 191, 216, 228, 253, 265, 290, 302, 327, 339, 364, 376, 401, 413, 438, 450, 475, 487, 512, 524, 549, 561, 586, 598, 623, 635, 660, 672, 697, 709, 734, 746, 771, 783, 808, 820, 845, 857, 882, 894, 919, 931, 956, 968
Offset: 1

Views

Author

Vincenzo Librandi, Jan 20 2009

Keywords

Comments

Numbers k such that k == 6 or 31 (mod 37). - Charles R Greathouse IV, Dec 27 2011

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,1,-1},{6,31,43},100] (* Vincenzo Librandi, Feb 29 2012 *)
    Select[Range[1000],PowerMod[#,2,37]==36&] (* Harvey P. Dale, May 06 2012 *)
    CoefficientList[Series[(6 + 25 x + 6 x^2)/((1 + x) (1 - x)^2), {x, 0, 30}], x] (* Vincenzo Librandi, May 03 2014 *)
  • PARI
    A155097(n)=n\2*37-6*(-1)^n /* M. F. Hasler, Jun 16 2010 */

Formula

From M. F. Hasler, Jun 16 2010: (Start)
a(n) = 6*(-1)^(n+1) + 37*floor(n/2).
a(2k+1) = 37*k + a(1), a(2k) = 37*k - a(1), with a(1) = A002314(5) since 37 = A002144(5).
a(n) = a(n-2) + 37 for all n > 2. (End)
G.f.: x*(6 + 25*x + 6*x^2)/((1 + x)*(1 - x)^2). - Vincenzo Librandi, May 03 2014
Sum_{n>=1} (-1)^(n+1)/a(n) = cot(6*Pi/37)*Pi/37. - Amiram Eldar, Feb 26 2023

Extensions

Terms checked, a(28) corrected, and minor edits by M. F. Hasler, Jun 16 2010