A155100 Triangle read by rows: coefficients in polynomials P_n(u) arising from the expansion of D^(n-1) (tan x) in increasing powers of tan x for n>=1 and 1 for n=0.
1, 0, 1, 1, 0, 1, 0, 2, 0, 2, 2, 0, 8, 0, 6, 0, 16, 0, 40, 0, 24, 16, 0, 136, 0, 240, 0, 120, 0, 272, 0, 1232, 0, 1680, 0, 720, 272, 0, 3968, 0, 12096, 0, 13440, 0, 5040, 0, 7936, 0, 56320, 0, 129024, 0, 120960, 0, 40320, 7936, 0, 176896, 0, 814080, 0, 1491840
Offset: 0
Examples
The polynomials P_{-1}(u) through P_6(u) with exponents in decreasing order: 1 u u^2 + 1 2*u^3 + 2*u 6*u^4 + 8*u^2 + 2 24*u^5 + 40*u^3 + 16*u 120*u^6 + 240*u^4 + 136*u^2 + 16 720*u^7 + 1680*u^5 + 1232*u^3 + 272*u ... Triangle begins: 1 0, 1 1, 0, 1 0, 2, 0, 2 2, 0, 8, 0, 6 0, 16, 0, 40, 0, 24 16, 0, 136, 0, 240, 0, 120 0, 272, 0, 1232, 0, 1680, 0, 720 272, 0, 3968, 0, 12096, 0, 13440, 0, 5040 0, 7936, 0, 56320, 0, 129024, 0, 120960, 0, 40320 7936, 0, 176896, 0, 814080, 0, 1491840, 0, 1209600, 0, 362880 0, 353792, 0, 3610112, 0, 12207360, 0, 18627840, 0, 13305600, 0, 3628800 ... From _Peter Bala_, Feb 07 2011: (Start) Examples of sign change statistic sc on snakes of type S(n): Snakes # sign changes sc t^sc =========== ================= ==== n=1: -2 1 -2 ........... 2 ........ t^2 -2 -1 -2 ........... 0 ........ 1 yields P_2(t) = 1 + t^2; n=2: -3 1 -2 3 ........ 3 ........ t^3 -3 2 1 3 ........ 1 ........ t -3 2 -1 3 ........ 3 ........ t^3 -3 -1 -2 3 ........ 1 ........ t yields P_3(t) = 2*t + 2*t^3. (End)
References
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, Reading, MA, 2nd ed. 1998, p. 287.
Links
- G. C. Greubel, Rows n = 0..101 of triangle, flattened
- K. Boyadzhiev, Derivative Polynomials for tanh, tan, sech and sec in Explicit Form, arXiv:0903.0117 [math.CA], 2009-2010.
- M.-P. Grosset and A. P. Veselov, Bernoulli numbers and solitons, arXiv:math/0503175 [math.GM], 2005.
- Gordon Haigh, A "natural" approach to Pick's theorem, Math. Gaz. 64 (1980), no. 429, 173-180.
- Michael E. Hoffman, Derivative polynomials for tangent and secant, Amer. Math. Monthly, 102 (1995), 23-30.
- Michael E. Hoffman, Derivative Polynomials, Euler Polynomials, and Associated Integer Sequences, The Electronic Journal of Combinatorics, Volume 6.1 (1999): Research paper R21, 13 p.
- Donald E. Knuth and Thomas J. Buckholtz, Computation of tangent, Euler and Bernoulli numbers, Math. Comp. 21 1967 663-688.
- Shi-Mei Ma, Qi Fang, Toufik Mansour, and Yeong-Nan Yeh, Alternating Eulerian polynomials and left peak polynomials, arXiv:2104.09374 [math.CO], 2021.
Crossrefs
Programs
-
Maple
P:=proc(n) option remember; if n=-1 then RETURN(1); elif n=0 then RETURN(u); else RETURN(expand((u^2+1)*diff(P(n-1),u))); fi; end; for n from -1 to 12 do t1:=series(P(n),u,20); lprint(seriestolist(t1)); od: # Alternatively: with(PolynomialTools): seq(print(CoefficientList(`if`(i=0,1,D@@(i-1))(tan),tan)), i=0..7); # Peter Luschny, May 19 2015
-
Mathematica
p[n_, u_] := D[Tan[x], {x, n}] /. Tan[x] -> u /. Sec[x] -> Sqrt[1 + u^2] // Expand; p[-1, u_] = 1; Flatten[ Table[ CoefficientList[ p[n, u], u], {n, -1, 9}]] (* Jean-François Alcover, Jun 28 2012 *) T[ n_, k_] := Which[n<0, Boole[n==-1 && k==0], n==0, Boole[k==1], True, (k-1)*T[n-1, k-1] + (k+1)*T[n-1, k+1]]; (* Michael Somos, Jul 09 2024 *)
-
PARI
{T(n, k) = if(n<0, n==-1 && k==0, n==0, k==1, (k-1)*T(n-1, k-1) + (k+1)*T(n-1, k+1))}; /* Michael Somos, Jul 09 2024 */
Formula
If the polynomials are denoted by P_n(u), we have the recurrence P_{-1}=1, P_0 = u, P_n = (u^2+1)*dP_{n-1}/du.
G.f.: Sum_{n >= 0} P_n(u) t^n/n! = (sin t + u*cos t)/(cos t - u sin t). [Hoffman]
From Peter Bala, Feb 07 2011: (Start)
Put T(n,t) = P_n(i*t), where i = sqrt(-1). We have the definite integral evaluation, valid when both m and n are >=1 and m+n >= 4:
int( T(m,t)*T(n,t)/(1-t^2), t = -1..1) = (-1)^((m-n)/2)*2^(m+n-1)*Bernoulli(m+n-2).
The case m = n is equivalent to the result of [Grosset and Veselov]. The methods used there extend to the general case.
RELATION WITH OTHER ROW POLYNOMIALS
The following three identities hold for n >= 1:
P_(n+1)(t) = (1+t^2)*R(n-1,t) where R(n,t) is the n-th row polynomial of A185896.
P_(n+1)(t) = (-2*i)^n*(t-i)*R(n,-1/2+1/2*i*t), where i = sqrt(-1) and R(n,x) is an ordered Bell polynomial, that is, the n-th row polynomial of A019538.
P_(n+1)(t) = (t-i)*(t+i)^n*A(n,(t-i)/(t+i)), where {A(n,t)}n>=1 = [1,1+t,1+4*t+t^2,1+11*t+11*t^2+t^3,...] is the sequence of Eulerian polynomials - see A008292. (End)
T(n,k) = cos((n+k)*Pi/2) * Sum_{p=0..n-1} A008292(n-1,p+1) Sum_{j=0..k}(-1)^(p+j+1) * binomial(p+1,k-j) *binomial(n-p-1,j) for n>1. - Ammar Khatab, Aug 15 2024
Extensions
Name clarified by Peter Luschny, May 25 2015
Comments