cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A155107 Numbers that are 23 or 30 (mod 53).

Original entry on oeis.org

23, 30, 76, 83, 129, 136, 182, 189, 235, 242, 288, 295, 341, 348, 394, 401, 447, 454, 500, 507, 553, 560, 606, 613, 659, 666, 712, 719, 765, 772, 818, 825, 871, 878, 924, 931, 977, 984, 1030, 1037, 1083, 1090, 1136, 1143, 1189, 1196, 1242, 1249, 1295
Offset: 1

Views

Author

Vincenzo Librandi, Jan 20 2009

Keywords

Comments

Also, numbers k such that k^2 == -1 (mod 53).
The first pair (a,b) is such that a+b=p=53, a*b=p*h+1, with h<=(p-1)/4; subsequent pairs are given as (a+kp, b+kp), k=1,2,3...

Crossrefs

Cf. numbers n such that n^2 == -1 (mod p), where p is a prime of the form 4k+1: A047221 (p=5), A155086 (p=13), A155095 (p=17), A155096 (p=29), A155097 (p=37), A155098 (p=41), this sequence (p=53), A241406 (p=61), A241407 (p=73), A241520 (p=89), A241521 (p=97).

Programs

  • Magma
    I:=[23,30,76]; [n le 3 select I[n] else Self(n-1)+Self(n-2)-Self(n-3): n in [1..50]]; // Vincenzo Librandi, Apr 24 2014
    
  • Magma
    [-23*(-1)^n+53*Floor(n/2): n in [1..50]]; // Vincenzo Librandi, Apr 24 2014
  • Mathematica
    Select[Range[1300], PowerMod[#, 2, 53] == 52 &] (* or *) LinearRecurrence[ {1, 1, -1}, {23, 30, 76}, 50] (* Harvey P. Dale, Nov 30 2011 *)
    CoefficientList[Series[(23 + 7 x + 23 x^2)/((1 + x) (1 - x)^2), {x, 0, 100}], x] (* Vincenzo Librandi, Apr 24 2014 *)
  • PARI
    A155107(n)=n\2*53-23*(-1)^n /* M. F. Hasler, Jun 16 2010 */
    

Formula

a(n) = 23*(-1)^(n+1) + 53*floor(n/2). - M. F. Hasler, Jun 16 2010
a(2k+1) = 53 k + a(1), a(2k) = 53 k - a(1), with a(1) = 23 = A002314(7) since 53 = A002144(7). - M. F. Hasler, Jun 16 2010
a(n) = a(n-2) + 53 for all n > 2. - M. F. Hasler, Jun 16 2010
From R. J. Mathar, Feb 19 2009: (Start)
a(n) = a(n-1) + a(n-2) - a(n-3) = 53*n/2 - 53/4 - 39*(-1)^n/4.
G.f.: x*(23 + 7*x + 23*x^2)/((1+x)*(1-x)^2). (End)

Extensions

Terms checked & minor edits by M. F. Hasler, Jun 16 2010