cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A155118 Array T(n,k) read by antidiagonals: the k-th term of the n-th iterated differences of A140429.

Original entry on oeis.org

0, 1, 1, 1, 2, 3, 3, 4, 6, 9, 5, 8, 12, 18, 27, 11, 16, 24, 36, 54, 81, 21, 32, 48, 72, 108, 162, 243, 43, 64, 96, 144, 216, 324, 486, 729, 85, 128, 192, 288, 432, 648, 972, 1458, 2187, 171, 256, 384, 576, 864, 1296, 1944, 2916, 4374, 6561, 341, 512, 768, 1152, 1728, 2592, 3888, 5832, 8748, 13122, 19683
Offset: 0

Views

Author

Paul Curtz, Jan 20 2009

Keywords

Comments

Deleting column k=0 and reading by antidiagonals yields A036561.
Deleting column k=0 and reading the antidiagonals downwards yields A175840.

Examples

			The array starts in row n=0 with columns k>=0 as:
   0   1    3    9    27    81    243    729    2187  ... A140429;
   1   2    6   18    54   162    486   1458    4374  ... A025192;
   1   4   12   36   108   324    972   2916    8748  ... A003946;
   3   8   24   72   216   648   1944   5832   17496  ... A080923;
   5  16   48  144   432  1296   3888  11664   34992  ... A257970;
  11  32   96  288   864  2592   7776  23328   69984  ...
  21  64  192  576  1728  5184  15552  46656  139968  ...
Antidiagonal triangle begins as:
   0;
   1,   1;
   1,   2,   3;
   3,   4,   6,   9;
   5,   8,  12,  18,  27;
  11,  16,  24,  36,  54,  81;
  21,  32,  48,  72, 108, 162, 243;
  43,  64,  96, 144, 216, 324, 486, 729;
  85, 128, 192, 288, 432, 648, 972, 1458, 2187; - _G. C. Greubel_, Mar 25 2021
		

Crossrefs

Programs

  • Magma
    t:= func< n,k | k eq 0 select (2^(n-k) -(-1)^(n-k))/3 else 2^(n-k)*3^(k-1) >;
    [t(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 25 2021
    
  • Maple
    T:=proc(n,k)if(k>0)then return 2^n*3^(k-1):else return (2^n - (-1)^n)/3:fi:end:
    for d from 0 to 8 do for m from 0 to d do print(T(d-m,m)):od:od: # Nathaniel Johnston, Apr 13 2011
  • Mathematica
    t[n_, k_]:= If[k==0, (2^(n-k) -(-1)^(n-k))/3, 2^(n-k)*3^(k-1)];
    Table[t[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 25 2021 *)
  • Sage
    def A155118(n,k): return (2^(n-k) -(-1)^(n-k))/3 if k==0 else 2^(n-k)*3^(k-1)
    flatten([[A155118(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 25 2021

Formula

For the square array:
T(n,k) = 2^n*3^(k-1), k>0.
T(n,k) = T(n-1,k+1) - T(n-1,k), n>0.
Rows:
T(0,k) = A140429(k) = A000244(k-1).
T(1,k) = A025192(k).
T(2,k) = A003946(k).
T(3,k) = A080923(k+1).
T(4,k) = A257970(k+3).
Columns:
T(n,0) = A001045(n) (Jacobsthal numbers J_{n}).
T(n,1) = A000079(n).
T(n,2) = A007283(n).
T(n,3) = A005010(n).
T(n,4) = A175806(n).
T(0,k) - T(k+1,0) = 4*A094705(k-2).
From G. C. Greubel, Mar 25 2021: (Start)
For the antidiagonal triangle:
t(n, k) = T(n-k, k).
t(n, k) = (2^(n-k) - (-1)^(n-k))/3 (J_{n-k}) if k = 0 else 2^(n-k)*3^(k-1).
Sum_{k=0..n} t(n, k) = 3^n - J_{n+1}, where J_{n} = A001045(n).
Sum_{k=0..n} t(n, k) = A004054(n-1) for n >= 1. (End)

Extensions

a(22) - a(57) from Nathaniel Johnston, Apr 13 2011