A155124 Triangle T(n, k) = 1-n if k=0 else 2, read by rows.
1, 0, 2, -1, 2, 2, -2, 2, 2, 2, -3, 2, 2, 2, 2, -4, 2, 2, 2, 2, 2, -5, 2, 2, 2, 2, 2, 2, -6, 2, 2, 2, 2, 2, 2, 2, -7, 2, 2, 2, 2, 2, 2, 2, 2, -8, 2, 2, 2, 2, 2, 2, 2, 2, 2, -9, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -10, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -11, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 0
Examples
Triangle begins as: 1; 0, 2; -1, 2, 2; -2, 2, 2, 2; -3, 2, 2, 2, 2; -4, 2, 2, 2, 2, 2; -5, 2, 2, 2, 2, 2, 2; -6, 2, 2, 2, 2, 2, 2, 2; -7, 2, 2, 2, 2, 2, 2, 2, 2; -8, 2, 2, 2, 2, 2, 2, 2, 2, 2; -9, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Magma
[k eq 0 select 1-n else 2: k in [0..n], n in [0..15]]; // G. C. Greubel, Mar 25 2021
-
Mathematica
Table[CoefficientList[-(m-1) + 2*x*(1-x^m)/(1-x), x], {m,0,15}]//Flatten Table[If[k==0, 1-n, 2], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 25 2021 *)
-
Sage
flatten([[1-n if k==0 else 2 for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Mar 25 2021
Formula
From G. C. Greubel, Mar 25 2021: (Start)
T(n, k) = 1-n if k=0 else 2.
Sum_{k=0..n} T(n ,k) = n+1 = A000027(n+1). (End)
Extensions
Edited by G. C. Greubel, Mar 25 2021