A155127 a(n) = 6*a(n-1) + 6*a(n-2), n>2, a(0)=1, a(1)=5, a(2)=35.
1, 5, 35, 240, 1650, 11340, 77940, 535680, 3681720, 25304400, 173916720, 1195326720, 8215460640, 56464724160, 388081108800, 2667274997760, 18332136639360, 125996469822720, 865971638772480, 5951808651571200
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (6,6).
Crossrefs
Programs
-
Magma
m:=6; [1] cat [n le 2 select (m-1)*(m*n-(m-1)) else m*(Self(n-1) + Self(n-2)): n in [1..30]]; // G. C. Greubel, Mar 25 2021
-
Maple
m:=6; 1,seq(simplify((1-m)*(sqrt(m)*I)^(n-2)*ChebyshevU(n, -I*sqrt(m)/2)), n = 1..30); # G. C. Greubel, Mar 25 2021
-
Mathematica
LinearRecurrence[{6,6},{1,5,35},20] (* Harvey P. Dale, Apr 14 2015 *)
-
Sage
m=6; [1]+[-(m-1)*(sqrt(m)*i)^(n-2)*chebyshev_U(n, -sqrt(m)*i/2) for n in (1..30)] # G. C. Greubel, Mar 25 2021
Formula
G.f.: (1-x-x^2)/(1-6*x-6*x^2) .
a(n) = (1/6)*[n=0] - 5*(sqrt(6)*i)^(n-2)*ChebyshevU(n, -sqrt(6)*i/2). - G. C. Greubel, Mar 25 2021