cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A155143 Primes p such that p-+2, p-+4, p-+6 are squarefree.

Original entry on oeis.org

17, 37, 89, 107, 109, 197, 199, 233, 307, 397, 433, 449, 467, 487, 557, 593, 613, 647, 683, 701, 757, 809, 811, 883, 953, 991, 1009, 1061, 1063, 1097, 1117, 1151, 1153, 1259, 1297, 1459, 1493, 1511, 1549, 1601, 1637, 1657, 1693, 1747, 1783, 1889, 1997
Offset: 1

Views

Author

Keywords

Comments

All terms == 1 or 8 mod 9. - Robert Israel, Jun 19 2016

Crossrefs

Programs

  • Maple
    filter:= t -> isprime(t) and andmap(numtheory:-issqrfree, [seq(seq(t+s*j, s=[-1,1]),j=[2,4,6])]):
    select(filter, [seq(seq(i+j,j=[-1,1]),i=9..1000,9)]); # Robert Israel, Jun 19 2016
  • Mathematica
    Select[Prime@ Range@ 302, Times @@ Boole@ Map[SquareFreeQ, # + (2 Range@ 7 - 8)] == 1 &] (* Michael De Vlieger, Jun 18 2016 *)
    Select[Prime[Range[400]],AllTrue[#+{2,4,6,-2,-4,-6},SquareFreeQ]&] (* Harvey P. Dale, Dec 13 2024 *)