A155144 a(n) = 9*a(n-1) + 9*a(n-2), n>2; a(0)=1, a(1)=8, a(2)=80.
1, 8, 80, 792, 7848, 77760, 770472, 7634088, 75641040, 749476152, 7426054728, 73579777920, 729052493832, 7223690445768, 71574686456400, 709185392119512, 7026840707183208, 69624234893724480, 689859680408169192
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..998
- Index entries for linear recurrences with constant coefficients, signature (9,9).
Crossrefs
Programs
-
Magma
[1] cat [n le 2 select 8*(9*n-8) else 9*(Self(n-1) + Self(n-2)): n in [1..30]]; // G. C. Greubel, Mar 24 2021
-
Maple
m:=30; S:=series( (1-x-x^2)/(1-9*x-9*x^2), x, m+1): seq(coeff(S, x, j), j=0..m); # G. C. Greubel, Mar 24 2021
-
Mathematica
Join[{1},LinearRecurrence[{9,9},{8,80},20]] (* or *) CoefficientList[ Series[ (1-x-x^2)/(1-9x-9x^2),{x,0,20}],x] (* Harvey P. Dale, Jun 19 2011 *)
-
Sage
[1]+[-8*(3*i)^(n-2)*chebyshev_U(n, -3*i/2) for n in (1..30)] # G. C. Greubel, Mar 24 2021
Formula
G.f.: (1-x-x^2)/(1-9*x-9*x^2).
From G. C. Greubel, Mar 24 2021: (Start)
a(n) = (1/9)*[n=0] - 8*3^(n-2)*ChebyshevU(n, -3*i/2).
a(n) = (1/9)*[n=0] + 8*3^(n-2)*Fibonacci(n+1, 3). (End)