A155158 Period 4: repeat [1, 5, 7, 3].
1, 5, 7, 3, 1, 5, 7, 3, 1, 5, 7, 3, 1, 5, 7, 3, 1, 5, 7, 3, 1, 5, 7, 3, 1, 5, 7, 3, 1, 5, 7, 3, 1, 5, 7, 3, 1, 5, 7, 3, 1, 5, 7, 3, 1, 5, 7, 3, 1, 5, 7, 3, 1, 5, 7, 3, 1, 5, 7, 3, 1, 5, 7, 3, 1, 5, 7, 3, 1, 5, 7, 3, 1, 5, 7, 3, 1, 5, 7, 3, 1, 5, 7, 3, 1, 5
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (1,-1,1).
Programs
-
Magma
&cat [[1, 5, 7, 3]^^30]; // Wesley Ivan Hurt, Jul 08 2016
-
Maple
seq(op([1, 5, 7, 3]), n=0..50); # Wesley Ivan Hurt, Jul 08 2016
-
Mathematica
PadRight[{}, 300, {1, 5, 7, 3}] (* Wesley Ivan Hurt, Jul 08 2016 *)
Formula
a(n) = A048473(n) mod 10.
First differences: a(n+1)-a(n) = (-1)^floor(n/2)*A010694(n+1).
Second differences: a(n+2)-2*a(n+1)+a(n) = (-1)^floor(1+n/2)*A010696(n).
Third differences: a(n+3)-3*a(n+2)+3*a(n+1)-a(n) = (-1)^floor((n+3)/2)*A105398(n).
G.f.: (1+4*x+3*x^2)/(1-x+x^2-x^3). - Colin Barker, Feb 28 2012
a(n) = a(n-1) - a(n-2) + a(n-3) for n>2. - Wesley Ivan Hurt, Jul 08 2016