A155162 Triangle T(n,k) = binomial(n, k)*(k! + (n-k)!), read by rows.
2, 2, 2, 3, 4, 3, 7, 9, 9, 7, 25, 28, 24, 28, 25, 121, 125, 80, 80, 125, 121, 721, 726, 390, 240, 390, 726, 721, 5041, 5047, 2562, 1050, 1050, 2562, 5047, 5041, 40321, 40328, 20216, 7056, 3360, 7056, 20216, 40328, 40321, 362881, 362889, 181512, 60984, 18144, 18144, 60984, 181512, 362889, 362881
Offset: 0
Examples
Triangle begins as: 2; 2, 2; 3, 4, 3; 7, 9, 9, 7; 25, 28, 24, 28, 25; 121, 125, 80, 80, 125, 121; 721, 726, 390, 240, 390, 726, 721; 5041, 5047, 2562, 1050, 1050, 2562, 5047, 5041; 40321, 40328, 20216, 7056, 3360, 7056, 20216, 40328, 40321; 362881, 362889, 181512, 60984, 18144, 18144, 60984, 181512, 362889, 362881;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Magma
[Binomial(n,k)*(Factorial(k) + Factorial(n-k)): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 19 2021
-
Maple
A155162:= (n,k)-> binomial(n,k)*(k! + (n-k)!); seq(seq(A155162(n,k), k=0..n), n=0..12); # G. C. Greubel, Mar 19 2021
-
Mathematica
Table[Binomial[n,k](k! +(n-k)!), {n,0,12},{k,0,n}]//Flatten
-
Sage
flatten([[binomial(n,k)*(factorial(k) + factorial(n-k)) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 19 2021
Formula
T(n,k) = binomial(n, k)*(k! + (n-k)!).
Extensions
Edited by G. C. Greubel, Mar 19 2021