A155173 Short leg A of primitive Pythagorean triangles such that perimeter s is average of twin prime pairs, q=p+1, A=q^2-p^2, C=q^2+p^2, B=2*p*q, s=A+B+C; s -/+ 1 are primes.
3, 5, 15, 21, 41, 59, 89, 101, 131, 141, 153, 155, 203, 209, 215, 231, 309, 351, 395, 405, 453, 455, 495, 551, 743, 761, 825, 915, 981, 1001, 1149, 1193, 1295, 1343, 1365, 1421, 1529, 1659, 1853, 2105, 2171, 2205, 2255, 2373, 2409, 2411, 2451, 2513, 2561, 2649
Offset: 1
Keywords
Programs
-
Mathematica
lst={};Do[p=n;q=p+1;a=q^2-p^2;c=q^2+p^2;b=2*p*q;s=a+b+c;If[PrimeQ[s-1]&&PrimeQ[s+1],AppendTo[lst,a]],{n,8!}];lst
Extensions
Name edited by Zak Seidov, Mar 21 2014
Comments