cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A155203 G.f.: A(x) = exp( Sum_{n>=1} 3^(n^2) * x^n/n ), a power series in x with integer coefficients.

Original entry on oeis.org

1, 3, 45, 6687, 10782369, 169490304819, 25016281429306077, 34185693516532070487615, 429210580094546346191627404353, 49269611092414945570325157106493868771
Offset: 0

Views

Author

Paul D. Hanna, Feb 04 2009

Keywords

Comments

More generally, for m integer, exp( Sum_{n>=1} m^(n^2) * x^n/n ) is a power series in x with integer coefficients.

Examples

			G.f.: A(x) = 1 + 3*x + 45*x^2 + 6687*x^3 + 10782369*x^4 + 169490304819*x^5 +...
log(A(x)) = 3*x + 3^4*x^2/2 + 3^9*x^3/3 + 3^16*x^4/4 + 3^25*x^5/5 +...
		

Crossrefs

Cf. A060722, A155204, A155205, A155206, A155812 (triangle), variants: A155200, A155207.

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n+1,3^(m^2)*x^m/m)+x*O(x^n)),n)}

Formula

Equals column 0 of triangle A155812.
G.f. satisfies: A'(x)/A(x) = 3 + 27*x*A'(9*x)/A(9*x). - Paul D. Hanna, Nov 15 2022
a(n) ~ 3^(n^2)/n. - Vaclav Kotesovec, Oct 31 2024

A155202 G.f.: A(x) = exp( Sum_{n>=1} (2^n - 1)^n * x^n/n ), a power series in x with integer coefficients.

Original entry on oeis.org

1, 1, 5, 119, 12783, 5739069, 10426379903, 76135573607705, 2234839096465512877, 263966776643953756165279, 125532809982533901346598445525, 240383033223427436734891985275952307
Offset: 0

Views

Author

Paul D. Hanna, Feb 04 2009

Keywords

Comments

More generally, for m integer, exp( Sum_{n>=1} (m^n + y)^n * x^n/n ) is a power series in x and y with integer coefficients.

Examples

			G.f.: A(x) = 1 + x + 5*x^2 + 119*x^3 + 12783*x^4 + 5739069*x^5 +...
log(A(x)) = x + 3^2*x^2/2 + 7^3*x^3/3 + 15^4*x^4/4 + 31^5*x^5/5 +...
		

Crossrefs

Cf. A055601, A155200, A155202, A155810 (triangle), variants: A155205, A155209.

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n+1,(2^m-1)^m*x^m/m)+x*O(x^n)),n)}

A155204 G.f.: A(x) = exp( Sum_{n>=1} (3^n + 1)^n * x^n/n ), a power series in x with integer coefficients.

Original entry on oeis.org

1, 4, 58, 7528, 11333974, 173018964568, 25223063625377572, 34295288559321731710864, 429734241619476967064512081894, 49292144502053186639397817183561560472
Offset: 0

Views

Author

Paul D. Hanna, Feb 04 2009

Keywords

Comments

More generally, for m integer, exp( Sum_{n>=1} (m^n + y)^n * x^n/n ) is a power series in x and y with integer coefficients.

Examples

			G.f.: A(x) = 1 + 4*x + 58*x^2 + 7528*x^3 + 11333974*x^4 + 173018964568*x^5 +...
log(A(x)) = 4*x + 10^2*x^2/2 + 28*x^3/3 + 82^4*x^4/4 + 244^5*x^5/5 +...
		

Crossrefs

Cf. A155203, A155205, A155206, A155812 (triangle), A202989; variants: A155201, A155208.

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n+1,(3^m+1)^m*x^m/m)+x*O(x^n)),n)}

Formula

Equals row sums of triangle A155812.

A155209 G.f.: A(x) = exp( Sum_{n>=1} (4^n - 1)^n * x^n/n ), a power series in x with integer coefficients.

Original entry on oeis.org

1, 3, 117, 83691, 1057319541, 224085796087563, 785909534807110163445, 45253898808490419883694669835, 42530103981310660908750359650219091445, 649533982980850199063905669772208004250784346635
Offset: 0

Views

Author

Paul D. Hanna, Feb 04 2009

Keywords

Comments

More generally, for m integer, exp( Sum_{n>=1} (m^n + y)^n * x^n/n ) is a power series in x and y with integer coefficients.

Examples

			G.f.: A(x) = 1 + 3*x + 117*x^2 + 83691*x^3 + 1057319541*x^4 +...
log(A(x)) = 3*x + 15^2*x^2/2 + 63^3*x^3/3 + 255^4*x^4/4 + 1023^5*x^5/5 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n+1,(4^m-1)^m*x^m/m)+x*O(x^n)),n)}

A155206 G.f.: A(x) = exp( Sum_{n>=1} (3^n - 1)^n/2^(n-1) * x^n/n ), a power series in x with integer coefficients.

Original entry on oeis.org

1, 2, 18, 1498, 1283090, 10377556482, 775351592888722, 532444511048570910746, 3349121447720205394546014978, 192371436319107536207473420480152034, 100642626897912335112447860229547933463000450
Offset: 0

Views

Author

Paul D. Hanna, Feb 04 2009

Keywords

Comments

More generally, for m integer, exp( Sum_{n>=1} (m^n - 1)^n/(m-1)^(n-1) * x^n/n ) is a power series in x with integer coefficients.
Note that g.f. exp( Sum_{n>=1} (3^n - 1)^n/2^n * x^n/n ) has fractional coefficients as a power series in x.

Examples

			G.f.: A(x) = 1 + 2*x + 18*x^2 + 1498*x^3 + 1283090*x^4 + 10377556482*x^5 +...
log(A(x)) = 2*x + 8^2/2*x^2/2 + 26^3/2^2*x^3/3 + 80^4/2^3*x^4/4 + 242^5/2^4*x^5/5 +...
		

Crossrefs

Cf. A155203, A155204, A155205, A155812 (triangle), variant: A155210.

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n+1,(3^m-1)^m/2^(m-1)*x^m/m)+x*O(x^n)),n)}

A156911 G.f.: A(x) = exp( Sum_{n>=1} 3^(n^2)/(1 - 3^n*x)^n * x^n/n ).

Original entry on oeis.org

1, 3, 54, 7470, 11326446, 173007630594, 25222890606413004, 34295263336258106333292, 429734207324188407742780371030, 49292144072318945019920850119049478578
Offset: 0

Views

Author

Paul D. Hanna, Feb 17 2009

Keywords

Comments

An example of this logarithmic identity at q=3:
Sum_{n>=1} [q^(n^2)/(1 - q^n*x)^n]*x^n/n = Sum_{n>=1} [(1 + q^n)^n - 1]*x^n/n.

Examples

			G.f.: A(x) = 1 + 3*x + 54*x^2 + 7470*x^3 + 11326446*x^4 +...
Log(A(x)) = 3/(1-3*x)*x + 3^4/(1-3^2*x)^2*x^2/2 + 3^9/(1-3^3*x)^3*x^3/3 +...
Log(A(x)) = (4-1)*x + (10^2-1)*x^2/2 + (28^3-1)*x^3/3 + (82^4-1)*x^4/4 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n+1, 3^(m^2)/(1-3^m*x)^m*x^m/m)+x*O(x^n)), n)}
    
  • PARI
    /* As First Differences of A155204: */
    {a(n)=polcoeff((1-x)*exp(sum(m=1, n+1, (3^m+1)^m*x^m/m)+x*O(x^n)), n)}

Formula

G.f.: A(x) = (1-x)*exp( Sum_{n>=1} (1 + 3^n)^n * x^n/n );
Equals the first differences of A155204.
Showing 1-6 of 6 results.