A155200
G.f.: A(x) = exp( Sum_{n>=1} 2^(n^2) * x^n/n ), a power series in x with integer coefficients.
Original entry on oeis.org
1, 2, 10, 188, 16774, 6745436, 11466849412, 80444398636280, 2306003967992402758, 268654794629082985019564, 126765597346260977505891041836, 241678070948246232010898235031930952, 1858395916567787793818891330877931472153500, 57560683587056536617649234722821582390470430186648
Offset: 0
G.f.: A(x) = 1 + 2*x + 10*x^2 + 188*x^3 + 16774*x^4 + 6745436*x^5 +...
log(A(x)) = 2*x + 2^4*x^2/2 + 2^9*x^3/3 + 2^16*x^4/4 + 2^25*x^5/5 +...
- R. P. Stanley. Enumerative combinatorics, Vol. 2. Volume 62 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1999.
-
seq(coeff(series(exp(add(2^(k^2)*x^k/k,k=1..n)),x,n+1), x, n), n = 0 .. 15); # Muniru A Asiru, Dec 19 2018
-
nmax = 14; Exp[Sum[2^(n^2) x^n/n, {n, 1, nmax}]] + O[x]^nmax // CoefficientList[#, x]& (* Jean-François Alcover, Feb 14 2019 *)
-
{a(n)=polcoeff(exp(sum(m=1,n+1,2^(m^2)*x^m/m)+x*O(x^n)),n)}
-
{a(n)=if(n==0,1,(1/n)*(2*a(n-1) + sum(k=1,n-1,4^k*a(k)*(2*(k+1)*a(n-1-k) - (n-k)*a(n-k)))))} \\ Paul D. Hanna, Mar 11 2009
-
{a(n)=if(n==0,1,(1/n)*sum(k=1,n,2^(k^2)*a(n-k)))} \\ Paul D. Hanna, Sep 01 2009
A155204
G.f.: A(x) = exp( Sum_{n>=1} (3^n + 1)^n * x^n/n ), a power series in x with integer coefficients.
Original entry on oeis.org
1, 4, 58, 7528, 11333974, 173018964568, 25223063625377572, 34295288559321731710864, 429734241619476967064512081894, 49292144502053186639397817183561560472
Offset: 0
G.f.: A(x) = 1 + 4*x + 58*x^2 + 7528*x^3 + 11333974*x^4 + 173018964568*x^5 +...
log(A(x)) = 4*x + 10^2*x^2/2 + 28*x^3/3 + 82^4*x^4/4 + 244^5*x^5/5 +...
A155205
G.f.: A(x) = exp( Sum_{n>=1} (3^n - 1)^n * x^n/n ), a power series in x with integer coefficients.
Original entry on oeis.org
1, 2, 34, 5924, 10252294, 166020197708, 24810918565918804, 34076399079565985138408, 428687477154543524080261047622, 49247086840315416213775472777558582540
Offset: 0
G.f.: A(x) = 1 + 2*x + 34*x^2 + 5924*x^3 + 10252294*x^4 +...
log(A(x)) = 2*x + 8^2*x^2/2 + 26^3*x^3/3 + 80^4*x^4/4 + 242^5*x^5/5 +...
A155207
G.f.: A(x) = exp( Sum_{n>=1} 4^(n^2) * x^n/n ), a power series in x with integer coefficients.
Original entry on oeis.org
1, 4, 136, 87904, 1074100576, 225184288253824, 787061981348092400896, 45273238870711805132010916864, 42535296046210357883346895894694749696, 649556283428320264374891976653586736162144180224
Offset: 0
G.f.: A(x) = 1 + 4*x + 136*x^2 + 87904*x^3 + 1074100576*x^4 +...
log(A(x)) = 4*x + 4^4*x^2/2 + 4^9*x^3/3 + 4^16*x^4/4 + 4^25*x^5/5 +...
A155812
Triangle, read by rows, where g.f.: A(x,y) = exp( Sum_{n>=1} (3^n + y)^n * x^n/n ) is a power series in x and y with integer coefficients.
Original entry on oeis.org
1, 3, 1, 45, 12, 1, 6687, 801, 39, 1, 10782369, 540720, 10764, 120, 1, 169490304819, 3499254081, 29275956, 129348, 363, 1, 25016281429306077, 206071208583660, 709664882337, 1321144632, 1459773, 1092, 1, 34185693516532070487615
Offset: 0
G.f.: A(x,y) = 1 + (3 + y)x + (45 + 12y + y^2)x^2 + (6687 + 801y + 39y^2 + y^3)x^3 +...
Triangle begins:
1;
3, 1;
45, 12, 1;
6687, 801, 39, 1;
10782369, 540720, 10764, 120, 1;
169490304819, 3499254081, 29275956, 129348, 363, 1;
25016281429306077, 206071208583660, 709664882337, 1321144632, 1459773, 1092, 1;
34185693516532070487615, 109444624780070083617, 150302858159634327, 115097787387369, 53628299415, 15815241, 3279, 1; ...
-
{T(n,k)=polcoeff(polcoeff(exp(sum(m=1,n+1,(3^m+y)^m*x^m/m)+x*O(x^n)),n,x),k,y)}
A155206
G.f.: A(x) = exp( Sum_{n>=1} (3^n - 1)^n/2^(n-1) * x^n/n ), a power series in x with integer coefficients.
Original entry on oeis.org
1, 2, 18, 1498, 1283090, 10377556482, 775351592888722, 532444511048570910746, 3349121447720205394546014978, 192371436319107536207473420480152034, 100642626897912335112447860229547933463000450
Offset: 0
G.f.: A(x) = 1 + 2*x + 18*x^2 + 1498*x^3 + 1283090*x^4 + 10377556482*x^5 +...
log(A(x)) = 2*x + 8^2/2*x^2/2 + 26^3/2^2*x^3/3 + 80^4/2^3*x^4/4 + 242^5/2^4*x^5/5 +...
A202630
G.f.: exp( Sum_{n>=1} (3^n + A(x))^n * x^n/n ).
Original entry on oeis.org
1, 4, 62, 7646, 11346032, 173032723944, 25223251091617644, 34295314615208803660344, 429734276354140075492905291038, 49292144933883713910495181570024546094, 51546480948489890934875222750204184228031911158
Offset: 0
G.f.: A(x) = 1 + 4*x + 62*x^2 + 7646*x^3 + 11346032*x^4 + 173032723944*x^5 +...
where
log(A(x)) = (3 + A(x))*x + (3^2 + A(x))^2*x^2/2 + (3^3 + A(x))^3*x^3/3 + (3^4 + A(x))^4*x^4/4 +...
-
{a(n)=local(A=1+x);for(i=1,n,A=exp(sum(m=1,n,(3^m+A+x*O(x^n))^m*x^m/m)));polcoeff(A,n)}
A156336
G.f.: A(x) = exp( Sum_{n>=1} 3^[(n^2+1)/2]*x^n/n ), a power series in x with integer coefficients.
Original entry on oeis.org
1, 3, 9, 99, 1917, 324567, 65546253, 121237985007, 231991261827633, 4053251131970038227, 71801958531451566872745, 11561440390042361895766055043, 1877401313066393527954697682635421
Offset: 0
G.f.: A(x) = 1 + 3*x + 9*x^2 + 99*x^3 + 1917*x^4 + 324567*x^5 +...
log(A(x)) = 3*x + 3^2*x^2/2 + 3^5*x^3/3 + 3^8*x^4/4 + 3^13*x^5/5 + 3^18*x^6/6 +...
A202629
G.f.: exp( Sum_{n>=1} (3^n - A(x))^n * x^n/n ).
Original entry on oeis.org
1, 2, 32, 5872, 10244654, 166008832278, 24810745551644598, 34076373857728228215714, 428687442859626139066325301140, 49247086410581981443124673896698437124, 51529024823944797258322973430879108808780359272
Offset: 0
G.f.: A(x) = 1 + 2*x + 32*x^2 + 5872*x^3 + 10244654*x^4 + 166008832278*x^5 +...
where
log(A(x)) = (3 - A(x))*x + (3^2 - A(x))^2*x^2/2 + (3^3 - A(x))^3*x^3/3 + (3^4 - A(x))^4*x^4/4 +...
-
{a(n)=local(A=1+x);for(i=1,n,A=exp(sum(m=1,n,(3^m-A+x*O(x^n))^m*x^m/m)));polcoeff(A,n)}
A156911
G.f.: A(x) = exp( Sum_{n>=1} 3^(n^2)/(1 - 3^n*x)^n * x^n/n ).
Original entry on oeis.org
1, 3, 54, 7470, 11326446, 173007630594, 25222890606413004, 34295263336258106333292, 429734207324188407742780371030, 49292144072318945019920850119049478578
Offset: 0
G.f.: A(x) = 1 + 3*x + 54*x^2 + 7470*x^3 + 11326446*x^4 +...
Log(A(x)) = 3/(1-3*x)*x + 3^4/(1-3^2*x)^2*x^2/2 + 3^9/(1-3^3*x)^3*x^3/3 +...
Log(A(x)) = (4-1)*x + (10^2-1)*x^2/2 + (28^3-1)*x^3/3 + (82^4-1)*x^4/4 +...
-
{a(n)=polcoeff(exp(sum(m=1, n+1, 3^(m^2)/(1-3^m*x)^m*x^m/m)+x*O(x^n)), n)}
-
/* As First Differences of A155204: */
{a(n)=polcoeff((1-x)*exp(sum(m=1, n+1, (3^m+1)^m*x^m/m)+x*O(x^n)), n)}
Showing 1-10 of 11 results.
Comments