A159034
Inverse Euler transform of A155200.
Original entry on oeis.org
2, 7, 170, 16380, 6710886, 11453246035, 80421421917330, 2305843009213685760, 268650182136584261045760, 126765060022822940149666965093, 241677817415439249618874010960062650, 1858395433210885261794643189387357732203180, 57560679870263253393868202642364377389525958615670
Offset: 1
-
Table[Sum[2^(d^2)*MoebiusMu[n/d], {d, Divisors[n]}]/n, {n, 1, 12}] (* Vaclav Kotesovec, Oct 09 2019 *)
-
a(n)={sumdiv(n, d, 2^(d^2)*moebius(n/d))/n} \\ Andrew Howroyd, Jan 08 2020
Original entry on oeis.org
1, 4, 24, 416, 34400, 13561728, 22961051392, 160934805885952, 4612329945733989888, 537318814887463743641600, 253532269357851227988228362240, 483356648964255814869226601582346240
Offset: 0
G.f.: A(x) = 1 + 4*x + 24*x^2 + 416*x^3 + 34400*x^4 + 13561728*x^5 +...
A(x)^(1/2) = 1 + 2*x + 10*x^2 + 188*x^3 + 16774*x^4 + 6745436*x^5 +...
log(A(x)) = 2^2*x + 2^5*x^2/2 + 2^10*x^3/3 + 2^17*x^4/4 + 2^26*x^5/5 +...
-
{a(n)=polcoeff(exp( 2*sum(k=1, n, 2^(k^2)*x^k/k)+x*O(x^n)), n)}
-
{a(n)=if(n==0, 1, (1/n)*sum(k=1, n, 2^(k^2+1)*a(n-k)))}
A156170
G.f.: exp( Sum_{n>=1} [Sum_{k>=1} k^n*x^k]^n/n ), a power series in x with integer coefficients.
Original entry on oeis.org
1, 1, 3, 10, 41, 219, 1602, 16635, 247171, 5242108, 157390565, 6663089873, 396778864166, 33200932308437, 3906922702271961, 646161881511137940, 150482521507292513413, 49318093291540113084965, 22790150225552744270503692, 14843990673285561887923674163, 13646527810852572644275538963207, 17710656073227095563348293151121448
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2 + 10*x^3 + 41*x^4 + 219*x^5 + 1602*x^6 +...
log(A(x)) = x + 5*x^2/2 + 22*x^3/3 + 117*x^4/4 + 821*x^5/5 + 7796*x^6/6 + 1810093*x^7/7 + 44561794*x^8/8 +...+ A276750(n)*x^n/n +...
The logarithm of g.f. A(x) equals the series:
log(A(x)) = Sum_{n>=1} (x + 2^n*x^2 + 3^n*x^3 +...+ k^n*x^k +...)^n/n,
or,
log(A(x)) = (x + 2*x^2 + 3*x^3 + 4*x^4 + 5*x^5 +...) +
(x + 2^2*x^2 + 3^2*x^3 + 4^2*x^4 + 5^2*x^5 +...)^2/2 +
(x + 2^3*x^2 + 3^3*x^3 + 4^3*x^4 + 5^3*x^5 +...)^3/3 +
(x + 2^4*x^2 + 3^4*x^3 + 4^4*x^4 + 5^4*x^5 +...)^4/4 + ...
This logarithmic series can be written using the Eulerian numbers like so:
log(A(x)) = x/(1-x)^2 + (x + x^2)^2/(1-x)^6/2 + (x + 4*x^2 + x^3)^3/(1-x)^12/3 + (x + 11*x^2 + 11*x^3 + x^4)^4/(1-x)^20/4 + (x + 26*x^2 + 66*x^3 + 26*x^4 + x^5)^5/(1-x)^30/5 + (x + 57*x^2 + 302*x^3 + 302*x^4 + 57*x^5 + x^6)^6/(1-x)^42/6 +...+ [ Sum_{k=1..n} A008292(n,k) * x^k ]^n / (1-x)^(n^2+n)/n +...
-
{a(n) = polcoeff( exp( sum(m=1,n, sum(k=1,n, k^m*x^k +x*O(x^n))^m/m ) ),n)}
for(n=0,30,print1(a(n),", "))
-
{A008292(n,k) = sum(j=0,k, (-1)^j * (k-j)^n * binomial(n+1,j))}
{a(n) = my(A=1, Oxn=x*O(x^n)); A = exp( sum(m=1,n+1, sum(k=1,m, A008292(m,k)*x^k/(1-x +Oxn)^(m+1) )^m / m ) ); polcoeff(A,n)}
for(n=0,30,print1(a(n),", "))
A167006
G.f.: exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n^2, n*k) ).
Original entry on oeis.org
1, 2, 6, 66, 4258, 1337374, 1933082159, 11353941470188, 291885138650054688, 29463501750534915665304, 12844314786465829040693498639, 21675661852919288704454219459892060, 156969579902607123047763327413679853875703
Offset: 0
G.f.: A(x) = 1 + 2*x + 6*x^2 + 66*x^3 + 4258*x^4 + 1337374*x^5 +...
log(A(x)) = 2*x + 8*x^2/2 + 170*x^3/3 + 16512*x^4/4 + 6643782*x^5/5 + 11582386286*x^6/6 +...+ A167009(n)*x^n/n +...
-
{a(n)=polcoeff(exp(sum(m=1,n,sum(k=0,m,binomial(m^2,k*m))*x^m/m)+x*O(x^n)),n)}
for(n=0,20,print1(a(n),", "))
A155203
G.f.: A(x) = exp( Sum_{n>=1} 3^(n^2) * x^n/n ), a power series in x with integer coefficients.
Original entry on oeis.org
1, 3, 45, 6687, 10782369, 169490304819, 25016281429306077, 34185693516532070487615, 429210580094546346191627404353, 49269611092414945570325157106493868771
Offset: 0
G.f.: A(x) = 1 + 3*x + 45*x^2 + 6687*x^3 + 10782369*x^4 + 169490304819*x^5 +...
log(A(x)) = 3*x + 3^4*x^2/2 + 3^9*x^3/3 + 3^16*x^4/4 + 3^25*x^5/5 +...
A155201
G.f.: A(x) = exp( Sum_{n>=1} (2^n + 1)^n * x^n/n ), a power series in x with integer coefficients.
Original entry on oeis.org
1, 3, 17, 285, 21747, 7894143, 12593691755, 84961748935779, 2379148487805445513, 273416748863491468927893, 128009274688933686165252807225, 242979449433397149030644307317592609, 1863847996727745781866688849374488247858333, 57652096246331953203644653244501049018464175026133
Offset: 0
G.f.: A(x) = 1 + 3*x + 17*x^2 + 285*x^3 + 21747*x^4 + 7894143*x^5 +...
log(A(x)) = 3*x + 5^2*x^2/2 + 9^3*x^3/3 + 17^4*x^4/4 + 33^5*x^5/5 +...
A209196
Triangle defined by g.f. A(x,y) = exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n^2, n*k) * y^k ), as read by rows.
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 32, 32, 1, 1, 487, 3282, 487, 1, 1, 11113, 657573, 657573, 11113, 1, 1, 335745, 209282906, 1513844855, 209282906, 335745, 1, 1, 12607257, 96673776804, 5580284351032, 5580284351032, 96673776804, 12607257, 1, 1, 565877928, 61162554558200
Offset: 0
This triangle begins:
1;
1, 1;
1, 4, 1;
1, 32, 32, 1;
1, 487, 3282, 487, 1;
1, 11113, 657573, 657573, 11113, 1;
1, 335745, 209282906, 1513844855, 209282906, 335745, 1;
1, 12607257, 96673776804, 5580284351032, 5580284351032, 96673776804, 12607257, 1;
1, 565877928, 61162554558200, 31336815578461815, 229089181252258800, 31336815578461815, 61162554558200, 565877928, 1; ...
G.f.: A(x,y) = 1 + (1+y)*x + (1+4*y+y^2)*x^2 + (1+32*y+32*y^2+y^3)*x^3 + (1+487*y+3282*y^2+487*y^3+y^4)*x^4 +...
The logarithm of the g.f. equals the series:
log(A(x,y)) = (1 + y)*x
+ (1 + 6*y + y^2)*x^2/2
+ (1 + 84*y + 84*y^2 + y^3)*x^3/3
+ (1 + 1820*y + 12870*y^2 + 1820*y^3 + y^4)*x^4/4
+ (1 + 53130*y + 3268760*y^2 + 3268760*y^3 + 53130*y^4 + y^5)*x^5/5 +...
in which the coefficients form A209330(n,k) = binomial(n^2, n*k).
-
{T(n,k)=polcoeff(polcoeff(exp(sum(m=1,n,x^m/m*sum(j=0,m,binomial(m^2,m*j)*y^j))+x*O(x^n)),n,x),k,y)}
for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
A155202
G.f.: A(x) = exp( Sum_{n>=1} (2^n - 1)^n * x^n/n ), a power series in x with integer coefficients.
Original entry on oeis.org
1, 1, 5, 119, 12783, 5739069, 10426379903, 76135573607705, 2234839096465512877, 263966776643953756165279, 125532809982533901346598445525, 240383033223427436734891985275952307
Offset: 0
G.f.: A(x) = 1 + x + 5*x^2 + 119*x^3 + 12783*x^4 + 5739069*x^5 +...
log(A(x)) = x + 3^2*x^2/2 + 7^3*x^3/3 + 15^4*x^4/4 + 31^5*x^5/5 +...
A155207
G.f.: A(x) = exp( Sum_{n>=1} 4^(n^2) * x^n/n ), a power series in x with integer coefficients.
Original entry on oeis.org
1, 4, 136, 87904, 1074100576, 225184288253824, 787061981348092400896, 45273238870711805132010916864, 42535296046210357883346895894694749696, 649556283428320264374891976653586736162144180224
Offset: 0
G.f.: A(x) = 1 + 4*x + 136*x^2 + 87904*x^3 + 1074100576*x^4 +...
log(A(x)) = 4*x + 4^4*x^2/2 + 4^9*x^3/3 + 4^16*x^4/4 + 4^25*x^5/5 +...
A155810
Triangle, read by rows, where g.f.: A(x,y) = exp( Sum_{n>=1} (2^n + y)^n * x^n/n ) is a power series in x and y with integer coefficients.
Original entry on oeis.org
1, 2, 1, 10, 6, 1, 188, 82, 14, 1, 16774, 4452, 490, 30, 1, 6745436, 1074934, 71108, 2602, 62, 1, 11466849412, 1082704500, 43173414, 951300, 13002, 126, 1, 80444398636280, 4411700155252, 104251164804, 1387446246, 11470404, 62538, 254, 1, 2306003967992402758, 72146891831948808, 989785148972932, 7803708940836, 38993810694, 129076164, 292810, 510, 1, 268654794629082985019564, 4724816968764733073446, 36967624172237518088, 169140002768370820, 500466007443108, 1001353593606, 1382564804, 1343434, 1022, 1
Offset: 0
G.f.: A(x,y) = 1 + (2 + y)x + (10 + 6y + y^2)x^2 + (188 + 82y + 14y^2 + y^3)x^3 +...
Triangle begins:
1;
2, 1;
10, 6, 1;
188, 82, 14, 1;
16774, 4452, 490, 30, 1;
6745436, 1074934, 71108, 2602, 62, 1;
11466849412, 1082704500, 43173414, 951300, 13002, 126, 1;
80444398636280, 4411700155252, 104251164804, 1387446246, 11470404, 62538, 254, 1;
2306003967992402758, 72146891831948808, 989785148972932, 7803708940836, 38993810694, 129076164, 292810, 510, 1;
268654794629082985019564, 4724816968764733073446, 36967624172237518088, 169140002768370820, 500466007443108, 1001353593606, 1382564804, 1343434, 1022, 1; ...
-
{T(n,k)=polcoeff(polcoeff(exp(sum(m=1,n+1,(2^m+y)^m*x^m/m)+x*O(x^n)),n,x),k,y)}
for(n=0, 12, for(k=0, n, print1(T(n, k), ", ")); print(""))
Showing 1-10 of 49 results.
Comments