A167009
a(n) = Sum_{k=0..n} C(n^2, n*k).
Original entry on oeis.org
1, 2, 8, 170, 16512, 6643782, 11582386286, 79450506979090, 2334899414608412672, 265166261617029717011822, 128442558588779813655233443038, 238431997806538515396060130910954852
Offset: 0
The triangle A209330 of coefficients C(n^2, n*k), n>=k>=0, begins:
1;
1, 1;
1, 6, 1;
1, 84, 84, 1;
1, 1820, 12870, 1820, 1;
1, 53130, 3268760, 3268760, 53130, 1;
1, 1947792, 1251677700, 9075135300, 1251677700, 1947792, 1; ...
in which the row sums form this sequence.
-
[(&+[Binomial(n^2, n*j): j in [0..n]]): n in [0..20]]; // G. C. Greubel, Aug 26 2022
-
Table[Sum[Binomial[n^2,n*k],{k,0,n}],{n,0,15}] (* Harvey P. Dale, Dec 11 2011 *)
-
a(n)=sum(k=0,n,binomial(n^2,n*k))
-
[sum(binomial(n^2, n*j) for j in (0..n)) for n in (0..20)] # G. C. Greubel, Aug 26 2022
A206850
G.f.: exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n^2, k^2) * x^k ).
Original entry on oeis.org
1, 1, 2, 4, 8, 56, 522, 5972, 424954, 16560881, 1528544877, 483389731955, 70609119680761, 53933819677734187, 58734216507052608587, 38789122414735365076327, 202547156817505166242299130, 712808848212730366850407506134, 2914935606380176735260119042755221
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 8*x^4 + 56*x^5 + 522*x^6 + 5972*x^7 +...
such that, by definition, the logarithm equals the series:
log(A(x)) = x*(1+x) + x^2*(1 + 4*x + x^2)/2
+ x^3*(1 + 9*x + 126*x^2 + x^3)/3
+ x^4*(1 + 16*x + 1820*x^2 + 11440*x^3 + x^4)/4
+ x^5*(1 + 25*x + 12650*x^2 + 2042975*x^3 + 2042975*x^4 + x^5)/5
+ x^6*(1 + 36*x + 58905*x^2 + 94143280*x^3 + 7307872110*x^4 + 600805296*x^5 + x^6)/6
+ x^7*(1 + 49*x + 211876*x^2 + 2054455634*x^3 + 3348108992991*x^4 + 63205303218876*x^5 + 262596783764*x^6 + x^7)/7 +...
+ x^n*(Sum_{k=0..n} binomial(n^2, k^2)*x^k)/n +...
-
{a(n)=polcoeff(exp(sum(m=1, n, sum(k=0, m, binomial(m^2, k^2)*x^k)*x^m/m)+x*O(x^n)), n)}
for(n=0,25,print1(a(n),", "))
A206830
G.f.: exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n^2, n*k) * x^k ).
Original entry on oeis.org
1, 1, 2, 5, 34, 520, 14397, 993806, 222547738, 98753510701, 66772601607218, 82150206439975648, 310163020349941301606, 3022167582612808506550780, 47176617497043375266215814522, 1129578055293824008530028604347686, 62478430488069985838347598494293429802
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 34*x^4 + 520*x^5 + 14397*x^6 + ...
such that, by definition, the logarithm equals:
log(A(x)) = x*(1+x) + x^2*(1 + 6*x + x^2)/2 + x^3*(1 + 84*x + 84*x^2 + x^3)/3 + x^4*(1 + 1820*x + 12870*x^2 + 1820*x^3 + x^4)/4 + x^5*(1 + 53130*x + 3268760*x^2 + 3268760*x^3 + 53130*x^4 + x^5)/5 + ... + x^n/n*Sum_{k=0..n} A209330(n,k)*x^k + ...
More explicitly,
log(A(x)) = x + 3*x^2/2 + 10*x^3/3 + 115*x^4/4 + 2416*x^5/5 + 83064*x^6/6 + ...
-
{a(n)=polcoeff(exp(sum(m=1, n, sum(k=0, m, binomial(m^2, m*k)*x^k)*x^m/m)+x*O(x^n)), n)}
for(n=0,15,print1(a(n),", "))
A209196
Triangle defined by g.f. A(x,y) = exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n^2, n*k) * y^k ), as read by rows.
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 32, 32, 1, 1, 487, 3282, 487, 1, 1, 11113, 657573, 657573, 11113, 1, 1, 335745, 209282906, 1513844855, 209282906, 335745, 1, 1, 12607257, 96673776804, 5580284351032, 5580284351032, 96673776804, 12607257, 1, 1, 565877928, 61162554558200
Offset: 0
This triangle begins:
1;
1, 1;
1, 4, 1;
1, 32, 32, 1;
1, 487, 3282, 487, 1;
1, 11113, 657573, 657573, 11113, 1;
1, 335745, 209282906, 1513844855, 209282906, 335745, 1;
1, 12607257, 96673776804, 5580284351032, 5580284351032, 96673776804, 12607257, 1;
1, 565877928, 61162554558200, 31336815578461815, 229089181252258800, 31336815578461815, 61162554558200, 565877928, 1; ...
G.f.: A(x,y) = 1 + (1+y)*x + (1+4*y+y^2)*x^2 + (1+32*y+32*y^2+y^3)*x^3 + (1+487*y+3282*y^2+487*y^3+y^4)*x^4 +...
The logarithm of the g.f. equals the series:
log(A(x,y)) = (1 + y)*x
+ (1 + 6*y + y^2)*x^2/2
+ (1 + 84*y + 84*y^2 + y^3)*x^3/3
+ (1 + 1820*y + 12870*y^2 + 1820*y^3 + y^4)*x^4/4
+ (1 + 53130*y + 3268760*y^2 + 3268760*y^3 + 53130*y^4 + y^5)*x^5/5 +...
in which the coefficients form A209330(n,k) = binomial(n^2, n*k).
-
{T(n,k)=polcoeff(polcoeff(exp(sum(m=1,n,x^m/m*sum(j=0,m,binomial(m^2,m*j)*y^j))+x*O(x^n)),n,x),k,y)}
for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
A206848
G.f.: exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n^2, k^2) ).
Original entry on oeis.org
1, 2, 5, 53, 3422, 826606, 1335470713, 9548109569885, 190076214495558260, 18558289189760778318731, 10286810587274357297985552184, 16301371794177939084545371104827679, 91249944361047494534207504939405352235731, 3283593155431496336538359592977826684908598341441
Offset: 0
G.f.: A(x) = 1 + 2*x + 5*x^2 + 53*x^3 + 3422*x^4 + 826606*x^5 + 1335470713*x^6 +...
where the logarithm of the g.f. yields the l.g.f. of A206849:
log(A(x)) = 2*x + 6*x^2/2 + 137*x^3/3 + 13278*x^4/4 + 4098627*x^5/5 +...
-
{a(n)=polcoeff(exp(sum(m=1, n, sum(k=0, m, binomial(m^2,k^2))*x^m/m)+x*O(x^n)), n)}
for(n=0, 25, print1(a(n), ", "))
A207135
G.f.: exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n^2, k*(n-k)) ).
Original entry on oeis.org
1, 2, 5, 32, 796, 77508, 26058970, 28765221688, 101824384364586, 1145306676113095172, 40618070255705049577152, 4523562146025746408072408406, 1576501611479138389748204925102907, 1714649258669533421310212170714443813118
Offset: 0
G.f.: A(x) = 1 + 2*x + 5*x^2 + 32*x^3 + 796*x^4 + 77508*x^5 +...
where the logarithm of the g.f. equals the l.g.f. of A207136:
log(A(x)) = 2*x + 6*x^2/2 + 74*x^3/3 + 2942*x^4/4 + 379502*x^5/5 +...
-
{a(n)=polcoeff(exp(sum(m=1,n,x^m/m*sum(k=0,m,binomial(m^2,k*(m-k))))+x*O(x^n)),n)}
for(n=0,20,print1(a(n),", "))
A207137
G.f.: exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n^2, k*(n-k))*x^k ).
Original entry on oeis.org
1, 1, 2, 4, 17, 171, 3171, 101741, 7181615, 1274607729, 428568152553, 223160743256395, 185627109707405932, 320952534083059792786, 1367454166673309618606950, 11078799748881429582280609036, 137939599816546528357634500253053, 2679390013936303204526656964298150849
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 17*x^4 + 171*x^5 + 3171*x^6 +...
where the logarithm of the g.f. equals the l.g.f. of A207138:
log(A(x)) = x + 3*x^2/2 + 7*x^3/3 + 51*x^4/4 + 761*x^5/5 + 17913*x^6/6 +...
-
{a(n)=polcoeff(exp(sum(m=1,n,x^m/m*sum(k=0,m,binomial(m^2,k*(m-k))*x^k))+x*O(x^n)),n)}
for(n=0,25,print1(a(n),", "))
A228809
G.f.: exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n*k, k^2) ).
Original entry on oeis.org
1, 2, 4, 12, 94, 2195, 158904, 31681195, 13904396167, 15305894726347, 44888344014554903, 288228807835914177564, 4270880356112396772814732, 169380654509201278629725097906, 15394658527137259981745081997280638, 3042352591056504014301304188228238554499
Offset: 0
G.f.: A(x) = 1 + 2*x + 4*x^2 + 12*x^3 + 94*x^4 + 2195*x^5 +...
where
log(A(x)) = 2*x + 4*x^2/2 + 20*x^3/3 + 296*x^4/4 + 10067*x^5/5 + 927100*x^6/6 +...+ A228808(n)*x^n/n +...
-
{a(n)=polcoeff(exp(sum(m=1, n, x^m/m*sum(k=0, m, binomial(m*k, k^2)))+x*O(x^n)), n)}
for(n=0, 20, print1(a(n), ", "))
A167007
G.f.: A(x) = exp( Sum_{n>=1} A167010(n)*x^n/n ) where A167010(n) = Sum_{k=0..n} binomial(n,k)^n.
Original entry on oeis.org
1, 2, 5, 26, 501, 42262, 14564184, 18926665052, 96371663657380, 1825266130738144920, 136764680697906838980633, 38133043109557952095731186822, 42464330390232136488003531922964743
Offset: 0
G.f.: A(x) = 1 + 2*x + 5*x^2 + 26*x^3 + 501*x^4 + 42262*x^5 + ...
log(A(x)) = 2*x + 6*x^2/2 + 56*x^3/3 + 1810*x^4/4 + 206252*x^5/5 + 86874564*x^6/6 + ... + A167010(n)*x^n/n + ...
-
A167010:= func< n | (&+[Binomial(n,j)^n: j in [0..n]]) >;
function A167007(n)
if n lt 2 then return n+1;
else return (&+[A167010(j)*A167007(n-j): j in [1..n]])/n;
end if; return A167007;
end function;
[A167007(n): n in [0..20]]; // G. C. Greubel, Aug 26 2022
-
A167010[n_]:= A167010[n]= Sum[Binomial[n,j]^n, {j,0,n}];
A167007[n_]:= A167007[n]= If[n==0, 1, (1/n)*Sum[A167010[j]*A167007[n-j], {j,n}]];
Table[A167007[n], {n,0,30}] (* G. C. Greubel, Aug 26 2022 *)
-
{a(n) = polcoeff(exp(sum(m=1, n, sum(k=0, m, binomial(m,k)^m)*x^m/m) +x*O(x^n)), n)};
-
{a(n)=if(n==0,1,(1/n)*sum(k=1,n,sum(j=0, k, binomial(k, j)^k)*a(n-k)))} \\ Paul D. Hanna, Nov 25 2009
-
def A167010(n): return sum(binomial(n,j)^n for j in (0..n))
def A167007(n): return 1 if (n==0) else (1/n)*sum( A167010(j)*A167007(n-j) for j in (1..n))
[A167007(n) for n in (0..30)] # G. C. Greubel, Aug 26 2022
A207138
L.g.f.: Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n^2, k*(n-k))*x^k = Sum_{n>=1} a(n)*x^n/n.
Original entry on oeis.org
1, 3, 7, 51, 761, 17913, 688745, 56611987, 11405877739, 4272862207703, 2450039810788461, 2224842228379519641, 4169966883810355864393, 19139862395982576668262825, 166161479603614500915921996017, 2206856314384330228779059994929555
Offset: 1
L.g.f.: L(x) = x + 3*x^2/2 + 7*x^3/3 + 51*x^4/4 + 761*x^5/5 + 17913*x^6/6 +...
where exponentiation equals the g.f. of A207137:
exp(L(x)) = 1 + x + 2*x^2 + 4*x^3 + 17*x^4 + 171*x^5 + 3171*x^6 +...
To illustrate the definition, the l.g.f. equals the series:
L(x) = (1 + x)*x + (1 + 4*x + 1*x^2)*x^2/2
+ (1 + 36*x + 36*x^2 + 1*x^3)*x^3/3
+ (1 + 560*x + 1820*x^2 + 560*x^3 + 1*x^4)*x^4/4
+ (1 + 12650*x + 177100*x^2 + 177100*x^3 + 12650*x^4 + 1*x^5)*x^5/5
+ (1 + 376992*x + 30260340*x^2 + 94143280*x^3 + 30260340*x^4 + 376992*x^5 + 1*x^6)*x^6/6 +...
-
Table[n*Sum[Binomial[(n-k)^2, k*(n-2*k)]/(n-k),{k,0,Floor[n/2]}],{n,1,20}] (* Vaclav Kotesovec, Mar 04 2014 *)
-
{a(n)=n*polcoeff(sum(m=1,n+1,x^m/m*sum(k=0,m,binomial(m^2, k*(m-k))*x^k))+x*O(x^n),n)}
-
{a(n)=n*sum(k=0,n\2,binomial((n-k)^2,k*(n-2*k))/(n-k))}
for(n=1,20,print1(a(n),", "))
Showing 1-10 of 12 results.
Comments