cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A167010 a(n) = Sum_{k=0..n} C(n,k)^n.

Original entry on oeis.org

1, 2, 6, 56, 1810, 206252, 86874564, 132282417920, 770670360699138, 16425660314368351892, 1367610300690018553312276, 419460465362069257397304825200, 509571049488109525160616367158261124, 2290638298071684282149128235413262383804352
Offset: 0

Views

Author

Paul D. Hanna, Nov 17 2009

Keywords

Comments

The number of n*n 0-1 matrices with equal numbers of nonzeros in every row. - David Eppstein, Jan 19 2012

Examples

			The triangle A209427 of coefficients C(n,k)^n, n>=k>=0, begins:
  1;
  1,     1;
  1,     4,        1;
  1,    27,       27,        1;
  1,   256,     1296,      256,        1;
  1,  3125,   100000,   100000,     3125,     1;
  1, 46656, 11390625, 64000000, 11390625, 46656,    1; ...
in which the row sums form this sequence.
		

Crossrefs

Programs

  • Magma
    [(&+[Binomial(n,j)^n: j in [0..n]]): n in [0..20]]; // G. C. Greubel, Aug 26 2022
    
  • Mathematica
    Table[Sum[Binomial[n, k]^n, {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Nov 05 2012 *)
  • PARI
    a(n)=sum(k=0,n,binomial(n,k)^n)
    
  • SageMath
    [sum(binomial(n,j)^n for j in (0..n)) for n in (0..20)] # G. C. Greubel, Aug 26 2022

Formula

Ignoring initial term, equals the logarithmic derivative of A167007. [Paul D. Hanna, Nov 18 2009]
If n is even then a(n) ~ c * exp(-1/4) * 2^(n^2 + n/2)/((Pi*n)^(n/2)), where c = Sum_{k = -oo..oo} exp(-2*k^2) = 1.271341522189... (see A218792). - Vaclav Kotesovec, Nov 05 2012
If n is odd then c = Sum_{k = -infinity..infinity} exp(-2*(k+1/2)^2) = 1.23528676585389... - Vaclav Kotesovec, Nov 06 2012
a(n) = (n!)^n * [x^n] (Sum_{k>=0} x^k / (k!)^n)^2. - Ilya Gutkovskiy, Jul 15 2020

A167008 a(n) = Sum_{k=0..n} C(n,k)^k.

Original entry on oeis.org

1, 2, 4, 14, 106, 1732, 66634, 5745700, 1058905642, 461715853196, 461918527950694, 989913403174541980, 5009399946447021173140, 60070720443204091719085184, 1548154498059133199618813305334, 92346622775540905956057053976278584
Offset: 0

Views

Author

Paul D. Hanna, Nov 17 2009

Keywords

Comments

Row sums of A219206.

Crossrefs

Programs

  • Haskell
    a167008 = sum . a219206_row  -- Reinhard Zumkeller, Feb 27 2015
    
  • Magma
    [(&+[Binomial(n,j)^j: j in [0..n]]): n in [0..20]]; // G. C. Greubel, Aug 26 2022
    
  • Mathematica
    Flatten[{1,Table[Sum[Binomial[n, k]^k, {k,0,n}], {n,20}]}]
    (* Program for numerical value of the limit a(n)^(1/n^2) *) (1-r)^(-r/2)/.FindRoot[(1-r)^(2*r-1)==r^(2*r),{r,1/2},WorkingPrecision->100] (* Vaclav Kotesovec, Dec 12 2012 *)
    Total/@Table[Binomial[n,k]^k,{n,0,20},{k,0,n}] (* Harvey P. Dale, Oct 19 2021 *)
  • PARI
    a(n)=sum(k=0,n,binomial(n,k)^k)
    
  • SageMath
    [sum(binomial(n,j)^j for j in (0..n)) for n in (0..20)] # G. C. Greubel, Aug 26 2022

Formula

Limit_{n->oo} a(n)^(1/n^2) = (1-r)^(-r/2) = 1.533628065110458582053143..., where r = A220359 = 0.70350607643066243... is the root of the equation (1-r)^(2*r-1) = r^(2*r). - Vaclav Kotesovec, Dec 12 2012

A167006 G.f.: exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n^2, n*k) ).

Original entry on oeis.org

1, 2, 6, 66, 4258, 1337374, 1933082159, 11353941470188, 291885138650054688, 29463501750534915665304, 12844314786465829040693498639, 21675661852919288704454219459892060, 156969579902607123047763327413679853875703
Offset: 0

Views

Author

Paul D. Hanna, Nov 17 2009

Keywords

Comments

Logarithmic derivative yields A167009.
Equals row sums of triangle A209196.

Examples

			G.f.: A(x) = 1 + 2*x + 6*x^2 + 66*x^3 + 4258*x^4 + 1337374*x^5 +...
log(A(x)) = 2*x + 8*x^2/2 + 170*x^3/3 + 16512*x^4/4 + 6643782*x^5/5 + 11582386286*x^6/6 +...+ A167009(n)*x^n/n +...
		

Crossrefs

Cf. variants: A206848, A228809.

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n,sum(k=0,m,binomial(m^2,k*m))*x^m/m)+x*O(x^n)),n)}
    for(n=0,20,print1(a(n),", "))

A096131 Sum of the terms of the n-th row of triangle pertaining to A096130.

Original entry on oeis.org

1, 7, 105, 2386, 71890, 2695652, 120907185, 6312179764, 375971507406, 25160695768715, 1869031937691061, 152603843369288819, 13584174777196666630, 1309317592648179024666, 135850890740575408906465
Offset: 1

Views

Author

Amarnath Murthy, Jul 04 2004

Keywords

Comments

The product of the terms of the n-th row is given by A034841.
Collection of partial binary matrices: 1 to n rows of length n and a total of n entries set to one in each partial matrix. - Olivier Gérard, Aug 08 2016

Examples

			From _Seiichi Manyama_, Aug 18 2018: (Start)
a(1) = (1/1!) * (1) = 1.
a(2) = (1/2!) * (1*2 + 3*4) = 7.
a(3) = (1/3!) * (1*2*3 + 4*5*6 + 7*8*9) = 105.
a(4) = (1/4!) * (1*2*3*4 + 5*6*7*8 + 9*10*11*12 + 13*14*15*16) = 2386. (End)
		

Crossrefs

Programs

  • GAP
    List(List([1..20],n->List([1..n],k->Binomial(k*n,n))),Sum); # Muniru A Asiru, Aug 12 2018
    
  • Maple
    A096130 := proc(n,k) binomial(k*n,n) ; end: A096131 := proc(n) local k; add( A096130(n,k),k=1..n) ; end: for n from 1 to 18 do printf("%d, ",A096131(n)) ; od ; # R. J. Mathar, Apr 30 2007
    seq(add((binomial(n*k,n)), k=0..n), n=1..15); # Zerinvary Lajos, Sep 16 2007
  • Mathematica
    Table[Sum[Binomial[k*n, n], {k, 0, n}], {n, 1, 20}] (* Vaclav Kotesovec, Jun 06 2013 *)
  • PARI
    a(n) = sum(k=1, n, binomial(k*n, n)); \\ Michel Marcus, Aug 20 2018

Formula

a(n) = Sum_{k=1..n} binomial(k*n, n). - Reinhard Zumkeller, Jan 09 2005
a(n) = (1/n!) * Sum_{j=1..n} Product_{i=n*(j-1)+1..n*j} i. - Reinhard Zumkeller, Jan 09 2005 [corrected by Seiichi Manyama, Aug 17 2018]
a(n) ~ exp(1)/(exp(1)-1) * binomial(n^2,n). - Vaclav Kotesovec, Jun 06 2013

Extensions

More terms from R. J. Mathar, Apr 30 2007
Edited by N. J. A. Sloane, Sep 06 2008 at the suggestion of R. J. Mathar

A209330 Triangle defined by T(n,k) = binomial(n^2, n*k), for n>=0, k=0..n, as read by rows.

Original entry on oeis.org

1, 1, 1, 1, 6, 1, 1, 84, 84, 1, 1, 1820, 12870, 1820, 1, 1, 53130, 3268760, 3268760, 53130, 1, 1, 1947792, 1251677700, 9075135300, 1251677700, 1947792, 1, 1, 85900584, 675248872536, 39049918716424, 39049918716424, 675248872536, 85900584, 1, 1
Offset: 0

Views

Author

Paul D. Hanna, Mar 06 2012

Keywords

Comments

Column 1 equals A014062.
Row sums equal A167009.
Antidiagonal sums equal A209331.
Ignoring initial row T(0,0), equals the logarithmic derivative of the g.f. of triangle A209196.

Examples

			The triangle of coefficients C(n^2,n*k), n>=k, k=0..n, begins:
1;
1, 1;
1, 6, 1;
1, 84, 84, 1;
1, 1820, 12870, 1820, 1;
1, 53130, 3268760, 3268760, 53130, 1;
1, 1947792, 1251677700, 9075135300, 1251677700, 1947792, 1;
1, 85900584, 675248872536, 39049918716424, 39049918716424, 675248872536, 85900584, 1; ...
		

Crossrefs

Cf. A014062 (column 1), A167009 (row sums), A209331, A209196.
Cf. related triangles: A209196 (exp), A228836, A228832, A226234.
Cf. A206830.

Programs

  • Mathematica
    Table[Binomial[n^2, n*k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Jan 05 2018 *)
  • PARI
    {T(n,k)=binomial(n^2,n*k)}
    for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))

A207136 a(n) = Sum_{k=0..n} binomial(n^2, k*(n-k)).

Original entry on oeis.org

1, 2, 6, 74, 2942, 379502, 155417946, 200991082378, 814134608643518, 10305926982053248142, 406157795399324680023006, 49758289996116571598723737976, 18917910771770463473290738891259546, 22290399373603219140501180230536732389992
Offset: 0

Views

Author

Paul D. Hanna, Feb 15 2012

Keywords

Comments

Ignoring initial term a(0), equals the logarithmic derivative of A207135.
Equals the row sums of triangle A228836.

Examples

			L.g.f.: L(x) = 2*x + 6*x^2/2 + 74*x^3/3 + 2942*x^4/4 + 379502*x^5/5 +...
where exponentiation equals the g.f. of A207135:
exp(L(x)) = 1 + 2*x + 5*x^2 + 32*x^3 + 796*x^4 + 77508*x^5 +...
By definition, the initial terms begin: a(0) = 1;
a(1) = C(1,0) + C(1,0);
a(2) = C(4,0) + C(4,1) + C(4,0);
a(3) = C(9,0) + C(9,2) + C(9,2) + C(9,0);
a(4) = C(16,0) + C(16,3) + C(16,4) + C(16,3) + C(16,0);
a(5) = C(25,0) + C(25,4) + C(25,6) + C(25,6) + C(25,4) + C(25,0);
a(6) = C(36,0) + C(36,5) + C(36,8) + C(36,9) + C(36,8) + C(36,5) + C(36,0); ...
which is evaluated as:
a(1) = 1 + 1 = 2;
a(2) = 1 + 4 + 1 = 6;
a(3) = 1 + 36 + 36 + 1 = 74;
a(4) = 1 + 560 + 1820 + 560 + 1 = 2942;
a(5) = 1 + 12650 + 177100 + 177100 + 12650 + 1 = 379502;
a(6) = 1 + 376992 + 30260340 + 94143280 + 30260340 + 376992 + 1 = 155417946; ...
		

Crossrefs

Cf. A207135 (exp), A167009, A228836.

Programs

  • Maple
    A207136:=n->add(binomial(n^2, k*(n-k)), k=0..n): seq(A207136(n), n=0..15); # Wesley Ivan Hurt, Jun 23 2015
  • Mathematica
    Table[Sum[Binomial[n^2, k*(n-k)],{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Mar 03 2014 *)
  • PARI
    {a(n)=sum(k=0,n,binomial(n^2,(n-k)*k))}
    for(n=0,20,print1(a(n),", "))

Formula

a(n) ~ c * 2*sqrt(2/(3*Pi)) * (4/3^(3/4))^(n^2)/n, where c = EllipticTheta[3,0,1/3] = JacobiTheta3(0,1/3) = 1.69145968168171534... if n is even, and c = EllipticTheta[2,0,1/3] = JacobiTheta2(0,1/3) = 1.690611203075214233... if n is odd. - Vaclav Kotesovec, Mar 03 2014

A218792 Decimal expansion of Sum_{n = -oo..oo} e^(-2*n^2).

Original entry on oeis.org

1, 2, 7, 1, 3, 4, 1, 5, 2, 2, 1, 8, 9, 0, 1, 5, 2, 2, 5, 2, 2, 2, 3, 8, 2, 5, 7, 8, 7, 9, 0, 9, 3, 5, 6, 2, 4, 9, 7, 6, 8, 6, 4, 9, 8, 7, 7, 1, 7, 6, 2, 6, 7, 0, 1, 1, 6, 4, 4, 1, 0, 8, 0, 1, 6, 9, 7, 4, 7, 7, 5, 8, 5, 6, 6, 5, 5, 3, 0, 7, 5, 0, 6, 2, 3, 9, 3
Offset: 1

Views

Author

Vaclav Kotesovec, Nov 05 2012

Keywords

Examples

			1.2713415221890152252223825787909356249768649877176...
For comparison, sqrt(Pi/2) = 1.2533141373155002512078826424055226265034933703050...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Sum[E^(-2*k^2), {k,-Infinity,Infinity}], 10, 200][[1]]
    RealDigits[EllipticTheta[3,0,1/E^2],10,200][[1]] (* Vaclav Kotesovec, Sep 22 2013 *)
  • PARI
    1 + 2*suminf(n=1, exp(-2*n^2)) \\ Charles R Greathouse IV, Jun 06 2016
    
  • PARI
    (eta(2*I/Pi))^5 / (eta(I/Pi)^2 * eta(4*I/Pi)^2) \\ Jianing Song, Oct 13 2021

Formula

Equals Jacobi theta_{3}(0,exp(-2)). - G. C. Greubel, Feb 01 2017
Equals eta(2*i/Pi)^5 / (eta(i/Pi)*eta(4*i/Pi))^2, where eta(t) = 1 - q - q^2 + q^5 + q^7 - q^12 - q^15 + ... is the Dedekind eta function without the q^(1/24) factor in powers of q = exp(2*Pi*i*t) (Cf. A000122). - Jianing Song, Oct 14 2021

A209331 a(n) = Sum_{k=0..[n/2]} binomial((n-k)^2, n*k-k^2).

Original entry on oeis.org

1, 1, 2, 7, 86, 1905, 66002, 5218373, 1340847046, 688750226335, 527838995308056, 707409447204872377, 2844096719471817175298, 30274246332924074325724393, 517646331335208169889265781259, 13363896516779950029547538703868509
Offset: 0

Views

Author

Paul D. Hanna, Mar 06 2012

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[(n-k)^2, n*k-k^2], {k, 0, Floor[n/2]}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 03 2014 *)
  • PARI
    {a(n)=sum(k=0,n\2, binomial((n-k)^2, n*k-k^2))}
    for(n=0,20,print1(a(n),", "))

Formula

Equals the antidiagonal sums of triangle A209330(n,k) = C(n^2,n*k).
Limit n->infinity a(n)^(1/n^2) = ((1-r)/r)^((1-r)^2/(3-4*r)) = 1.4360944969025357119535113523184471047971386419..., where r = A323777 = 0.220676041323740696312822269998050167187681031... is the root of the equation (1-2*r)^(3-4*r) = (1-r)^(2-2*r) * r^(1-2*r). - Vaclav Kotesovec, Mar 03 2014

Extensions

Name corrected by Vaclav Kotesovec, Mar 03 2014

A228808 a(n) = Sum_{k=0..n} binomial(n*k, k^2).

Original entry on oeis.org

1, 2, 4, 20, 296, 10067, 927100, 219541877, 110728186648, 137502766579907, 448577320868198789, 3169529341990169816462, 51243646781214826181569316, 2201837465728010770618930322223, 215520476721579201896200887266792583, 45634827026091489574547858030506357191920
Offset: 0

Views

Author

Paul D. Hanna, Sep 04 2013

Keywords

Comments

Ignoring initial term, equals the logarithmic derivative of A228809.
Equals row sums of triangle A228832.

Examples

			L.g.f.: L(x) = 2*x + 4*x^2/2 + 20*x^3/3 + 296*x^4/4 + 10067*x^5/5 +...
where
exp(L(x)) = 1 + 2*x + 4*x^2 + 12*x^3 + 94*x^4 + 2195*x^5 + 158904*x^6 + 31681195*x^7 +...+ A228809(n)*x^n +...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n*k, k^2],{k,0,n}],{n,0,15}] (* Vaclav Kotesovec, Sep 06 2013 *)
  • PARI
    a(n)=sum(k=0,n,binomial(n*k,k^2))
    for(n=0,20,print1(a(n),", "))

Formula

Limit n->infinity a(n)^(1/n^2) = (1-r)^(-r/2) = 1.533628065110458582053143..., where r = A220359 = 0.70350607643066243... is the root of the equation (1-r)^(2*r-1) = r^(2*r). - Vaclav Kotesovec, Sep 06 2013

A361043 Array read by descending antidiagonals. A(n, k) is, if n > 0, the number of multiset permutations of {0, 1} of length n * k where the number of occurrences of 1 are multiples of n. A(0, k) = k + 1.

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 4, 4, 2, 1, 5, 8, 8, 2, 1, 6, 16, 32, 22, 2, 1, 7, 32, 128, 170, 72, 2, 1, 8, 64, 512, 1366, 992, 254, 2, 1, 9, 128, 2048, 10922, 16512, 6008, 926, 2, 1, 10, 256, 8192, 87382, 261632, 215766, 37130, 3434, 2, 1, 11, 512, 32768, 699050, 4196352, 6643782, 2973350, 232562, 12872, 2, 1
Offset: 0

Views

Author

Peter Luschny, Mar 18 2023

Keywords

Comments

Because of the interchangeability of 0 and 1 in the definition, A(n, k) is even if n, k >= 1. In other words, if the binary representation of a permutation of the defined type is counted, then so is the 1's complement of that representation.

Examples

			Array A(n, k) starts:
 [0] 1, 2,    3,      4,        5,          6,            7, ...  A000027
 [1] 1, 2,    4,      8,       16,         32,           64, ...  A000079
 [2] 1, 2,    8,     32,      128,        512,         2048, ...  A081294
 [3] 1, 2,   22,    170,     1366,      10922,        87382, ...  A007613
 [4] 1, 2,   72,    992,    16512,     261632,      4196352, ...  A070775
 [5] 1, 2,  254,   6008,   215766,    6643782,    215492564, ...  A070782
 [6] 1, 2,  926,  37130,  2973350,  174174002,  11582386286, ...  A070967
 [7] 1, 2, 3434, 232562, 42484682, 4653367842, 644032289258, ...  A094211
.
Triangle T(n, k) starts:
 [0]  1;
 [1]  2,   1;
 [2]  3,   2,    1;
 [3]  4,   4,    2,     1;
 [4]  5,   8,    8,     2,      1;
 [5]  6,  16,   32,    22,      2,      1;
 [6]  7,  32,  128,   170,     72,      2,     1;
 [7]  8,  64,  512,  1366,    992,    254,     2,    1;
 [8]  9, 128, 2048, 10922,  16512,   6008,   926,    2, 1;
 [9] 10, 256, 8192, 87382, 261632, 215766, 37130, 3434, 2, 1;
.
A(2, 2) = 8 = card(0000, 1100, 1010, 1001, 0110, 0101, 0011, 1111).
A(1, 3) = 8 = card(000, 100, 010, 001, 110, 101, 011, 111).
		

Crossrefs

Rows: A000027 (n=0), A000079 (n=1), A081294 (n=2), A007613 (n=3), A070775 (n=4), A070782 (n=5), A070967 (n=6), A094211 (n=7), A070832 (n=8), A094213 (n=9), A070833 (n=10).
Variant: A308500 (upwards antidiagonals).
Cf. A167009 (main diagonal).

Programs

  • Maple
    T := (n, k) -> add(binomial((n - k)*k, j*k), j = 0 .. n-k):
    seq(print(seq(T(n, k), k = 0..n)), n = 0..7);
  • SageMath
    # In Python use this import:
    # from sympy.utilities.iterables import multiset_permutations
    def A(n: int, k: int) -> int:
        if n == 0: return k + 1
        count = 0
        for a in range(0, n * k + 1, n):
            S = [i < a for i in range(n * k)]
            count += Permutations(S).cardinality()
        return count
    def ARow(n: int, size: int) -> list[int]:
        return [A(n, k) for k in range(size)]
    for n in range(6): print(ARow(n, 5))

Formula

A(n, k) = Sum_{j=0..k} binomial(n*k, n*j).
T(n, k) = Sum_{j=0..n-k} binomial((n - k)*k, j*k).
Showing 1-10 of 13 results. Next