A167009
a(n) = Sum_{k=0..n} C(n^2, n*k).
Original entry on oeis.org
1, 2, 8, 170, 16512, 6643782, 11582386286, 79450506979090, 2334899414608412672, 265166261617029717011822, 128442558588779813655233443038, 238431997806538515396060130910954852
Offset: 0
The triangle A209330 of coefficients C(n^2, n*k), n>=k>=0, begins:
1;
1, 1;
1, 6, 1;
1, 84, 84, 1;
1, 1820, 12870, 1820, 1;
1, 53130, 3268760, 3268760, 53130, 1;
1, 1947792, 1251677700, 9075135300, 1251677700, 1947792, 1; ...
in which the row sums form this sequence.
-
[(&+[Binomial(n^2, n*j): j in [0..n]]): n in [0..20]]; // G. C. Greubel, Aug 26 2022
-
Table[Sum[Binomial[n^2,n*k],{k,0,n}],{n,0,15}] (* Harvey P. Dale, Dec 11 2011 *)
-
a(n)=sum(k=0,n,binomial(n^2,n*k))
-
[sum(binomial(n^2, n*j) for j in (0..n)) for n in (0..20)] # G. C. Greubel, Aug 26 2022
A228832
Triangle defined by T(n,k) = binomial(n*k, k^2), for n>=0, k=0..n, as read by rows.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 15, 1, 1, 4, 70, 220, 1, 1, 5, 210, 5005, 4845, 1, 1, 6, 495, 48620, 735471, 142506, 1, 1, 7, 1001, 293930, 30421755, 183579396, 5245786, 1, 1, 8, 1820, 1307504, 601080390, 40225345056, 69668534468, 231917400, 1, 1, 9, 3060, 4686825, 7307872110, 3169870830126, 96926348578605, 37387265592825, 11969016345, 1
Offset: 0
The triangle of coefficients C(n*k, k^2), n>=k, k=0..n, begins:
1;
1, 1;
1, 2, 1;
1, 3, 15, 1;
1, 4, 70, 220, 1;
1, 5, 210, 5005, 4845, 1;
1, 6, 495, 48620, 735471, 142506, 1;
1, 7, 1001, 293930, 30421755, 183579396, 5245786, 1;
1, 8, 1820, 1307504, 601080390, 40225345056, 69668534468, 231917400, 1;
1, 9, 3060, 4686825, 7307872110, 3169870830126, 96926348578605, 37387265592825, 11969016345, 1; ...
-
{T(n, k)=binomial(n*k, k^2)}
for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))
A206830
G.f.: exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n^2, n*k) * x^k ).
Original entry on oeis.org
1, 1, 2, 5, 34, 520, 14397, 993806, 222547738, 98753510701, 66772601607218, 82150206439975648, 310163020349941301606, 3022167582612808506550780, 47176617497043375266215814522, 1129578055293824008530028604347686, 62478430488069985838347598494293429802
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 34*x^4 + 520*x^5 + 14397*x^6 + ...
such that, by definition, the logarithm equals:
log(A(x)) = x*(1+x) + x^2*(1 + 6*x + x^2)/2 + x^3*(1 + 84*x + 84*x^2 + x^3)/3 + x^4*(1 + 1820*x + 12870*x^2 + 1820*x^3 + x^4)/4 + x^5*(1 + 53130*x + 3268760*x^2 + 3268760*x^3 + 53130*x^4 + x^5)/5 + ... + x^n/n*Sum_{k=0..n} A209330(n,k)*x^k + ...
More explicitly,
log(A(x)) = x + 3*x^2/2 + 10*x^3/3 + 115*x^4/4 + 2416*x^5/5 + 83064*x^6/6 + ...
-
{a(n)=polcoeff(exp(sum(m=1, n, sum(k=0, m, binomial(m^2, m*k)*x^k)*x^m/m)+x*O(x^n)), n)}
for(n=0,15,print1(a(n),", "))
A209196
Triangle defined by g.f. A(x,y) = exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n^2, n*k) * y^k ), as read by rows.
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 32, 32, 1, 1, 487, 3282, 487, 1, 1, 11113, 657573, 657573, 11113, 1, 1, 335745, 209282906, 1513844855, 209282906, 335745, 1, 1, 12607257, 96673776804, 5580284351032, 5580284351032, 96673776804, 12607257, 1, 1, 565877928, 61162554558200
Offset: 0
This triangle begins:
1;
1, 1;
1, 4, 1;
1, 32, 32, 1;
1, 487, 3282, 487, 1;
1, 11113, 657573, 657573, 11113, 1;
1, 335745, 209282906, 1513844855, 209282906, 335745, 1;
1, 12607257, 96673776804, 5580284351032, 5580284351032, 96673776804, 12607257, 1;
1, 565877928, 61162554558200, 31336815578461815, 229089181252258800, 31336815578461815, 61162554558200, 565877928, 1; ...
G.f.: A(x,y) = 1 + (1+y)*x + (1+4*y+y^2)*x^2 + (1+32*y+32*y^2+y^3)*x^3 + (1+487*y+3282*y^2+487*y^3+y^4)*x^4 +...
The logarithm of the g.f. equals the series:
log(A(x,y)) = (1 + y)*x
+ (1 + 6*y + y^2)*x^2/2
+ (1 + 84*y + 84*y^2 + y^3)*x^3/3
+ (1 + 1820*y + 12870*y^2 + 1820*y^3 + y^4)*x^4/4
+ (1 + 53130*y + 3268760*y^2 + 3268760*y^3 + 53130*y^4 + y^5)*x^5/5 +...
in which the coefficients form A209330(n,k) = binomial(n^2, n*k).
-
{T(n,k)=polcoeff(polcoeff(exp(sum(m=1,n,x^m/m*sum(j=0,m,binomial(m^2,m*j)*y^j))+x*O(x^n)),n,x),k,y)}
for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
A228836
Triangle defined by T(n,k) = binomial(n^2, (n-k)*k), for n>=0, k=0..n, as read by rows.
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 36, 36, 1, 1, 560, 1820, 560, 1, 1, 12650, 177100, 177100, 12650, 1, 1, 376992, 30260340, 94143280, 30260340, 376992, 1, 1, 13983816, 8217822536, 92263734836, 92263734836, 8217822536, 13983816, 1, 1, 621216192, 3284214703056, 159518999862720, 488526937079580, 159518999862720, 3284214703056, 621216192, 1
Offset: 0
The triangle of coefficients C(n^2, (n-k)*k), n>=k, k=0..n, begins:
1;
1, 1;
1, 4, 1;
1, 36, 36, 1;
1, 560, 1820, 560, 1;
1, 12650, 177100, 177100, 12650, 1;
1, 376992, 30260340, 94143280, 30260340, 376992, 1;
1, 13983816, 8217822536, 92263734836, 92263734836, 8217822536, 13983816, 1;
...
-
T[n_,k_]:=Binomial[n^2, (n-k)*k]; Table[T[n,k],{n,0,8},{k,0,n}]//Flatten (* Stefano Spezia, Aug 02 2025 *)
-
{T(n,k)=binomial(n^2, (n-k)*k)}
for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))
A209331
a(n) = Sum_{k=0..[n/2]} binomial((n-k)^2, n*k-k^2).
Original entry on oeis.org
1, 1, 2, 7, 86, 1905, 66002, 5218373, 1340847046, 688750226335, 527838995308056, 707409447204872377, 2844096719471817175298, 30274246332924074325724393, 517646331335208169889265781259, 13363896516779950029547538703868509
Offset: 0
-
Table[Sum[Binomial[(n-k)^2, n*k-k^2], {k, 0, Floor[n/2]}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 03 2014 *)
-
{a(n)=sum(k=0,n\2, binomial((n-k)^2, n*k-k^2))}
for(n=0,20,print1(a(n),", "))
A226234
Triangle defined by T(n,k) = binomial(n^2, k^2), for n>=0, k=0..n, as read by rows.
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 9, 126, 1, 1, 16, 1820, 11440, 1, 1, 25, 12650, 2042975, 2042975, 1, 1, 36, 58905, 94143280, 7307872110, 600805296, 1, 1, 49, 211876, 2054455634, 3348108992991, 63205303218876, 262596783764, 1, 1, 64, 635376, 27540584512, 488526937079580, 401038568751465792, 1118770292985239888, 159518999862720, 1
Offset: 0
The triangle of coefficients C(n^2,k^2), n>=k, k=0..n, begins:
1;
1, 1;
1, 4, 1;
1, 9, 126, 1;
1, 16, 1820, 11440, 1;
1, 25, 12650, 2042975, 2042975, 1;
1, 36, 58905, 94143280, 7307872110, 600805296, 1;
1, 49, 211876, 2054455634, 3348108992991, 63205303218876, 262596783764, 1;
1, 64, 635376, 27540584512, 488526937079580, 401038568751465792, 1118770292985239888, 159518999862720, 1; ...
-
{T(n,k)=binomial(n^2,k^2)}
for(n=0,9,for(k=0,n,print1(T(n,k),", "));print(""))
A227403
a(n) = Sum_{k=0..n} binomial(n^2, n*k) * binomial(n*k, k^2).
Original entry on oeis.org
1, 2, 14, 1514, 1308582, 17304263902, 1362702892177706, 1323407909279927430346, 11218363871234340925730020646, 637467717878006909442727527733810142, 519660435252919757259949810325837093364580014, 2289503386759572781844843312201361014103189493095636611
Offset: 0
The following triangles illustrate the terms involved in the sum
a(n) = Sum_{k=0..n} A209330(n,k) * A228832(n,k).
Triangle A209330(n,k) = binomial(n^2, n*k) begins:
1;
1, 1;
1, 6, 1;
1, 84, 84, 1;
1, 1820, 12870, 1820, 1;
1, 53130, 3268760, 3268760, 53130, 1;
1, 1947792, 1251677700, 9075135300, 1251677700, 1947792, 1;
...
Triangle A228832(n,k) = binomial(n*k, k^2) begins:
1;
1, 1;
1, 2, 1;
1, 3, 15, 1;
1, 4, 70, 220, 1;
1, 5, 210, 5005, 4845, 1;
1, 6, 495, 48620, 735471, 142506, 1; ...
-
Table[Sum[Binomial[n^2,n*k]*Binomial[n*k,k^2],{k,0,n}],{n,0,10}] (* Vaclav Kotesovec, Sep 21 2013 *)
r^(-(1+r)^2/(2*r))/.FindRoot[(1-r)^(2*r) == r^(2*r+1), {r,1/2}, WorkingPrecision->50] (* program for numerical value of the limit n->infinity a(n)^(1/n^2), Vaclav Kotesovec, Sep 21 2013 *)
-
{a(n)=sum(k=0, n, binomial(n^2, n*k)*binomial(n*k, k^2))}
for(n=0,20,print1(a(n),", "))
A245243
Triangle, read by rows, defined by T(n,k) = C(n^2 - k^2, n*k - k^2), for k=0..n, n>=0.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 28, 10, 1, 1, 455, 495, 35, 1, 1, 10626, 54264, 8008, 126, 1, 1, 324632, 10518300, 4686825, 125970, 462, 1, 1, 12271512, 3190187286, 5586853480, 354817320, 1961256, 1716, 1, 1, 553270671, 1399358844975, 11899700525790, 2254848913647, 25140840660, 30421755, 6435, 1
Offset: 0
Triangle T(n,k) = C(n^2 - k^2, n*k - k^2) begins:
1;
1, 1;
1, 3, 1;
1, 28, 10, 1;
1, 455, 495, 35, 1;
1, 10626, 54264, 8008, 126, 1;
1, 324632, 10518300, 4686825, 125970, 462, 1;
1, 12271512, 3190187286, 5586853480, 354817320, 1961256, 1716, 1;
1, 553270671, 1399358844975, 11899700525790, 2254848913647, 25140840660, 30421755, 6435, 1; ...
-
Table[Binomial[n^2-k^2,n k-k^2],{n,0,10},{k,0,n}]//Flatten (* Harvey P. Dale, Jan 06 2019 *)
-
{T(n,k) = binomial(n^2 - k^2, n*k - k^2)}
for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
-
{T(n,k) = binomial(n^2,n*k) * binomial(n*k,k^2) / binomial(n^2,k^2)}
for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
Showing 1-9 of 9 results.
Comments