cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A228832 Triangle defined by T(n,k) = binomial(n*k, k^2), for n>=0, k=0..n, as read by rows.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 15, 1, 1, 4, 70, 220, 1, 1, 5, 210, 5005, 4845, 1, 1, 6, 495, 48620, 735471, 142506, 1, 1, 7, 1001, 293930, 30421755, 183579396, 5245786, 1, 1, 8, 1820, 1307504, 601080390, 40225345056, 69668534468, 231917400, 1, 1, 9, 3060, 4686825, 7307872110, 3169870830126, 96926348578605, 37387265592825, 11969016345, 1
Offset: 0

Views

Author

Paul D. Hanna, Sep 04 2013

Keywords

Comments

Central coefficients are A201555(n) = C(2*n^2,n^2) = A000984(n^2), where A000984 is the central binomial coefficients.

Examples

			The triangle of coefficients C(n*k, k^2), n>=k, k=0..n, begins:
1;
1, 1;
1, 2, 1;
1, 3, 15, 1;
1, 4, 70, 220, 1;
1, 5, 210, 5005, 4845, 1;
1, 6, 495, 48620, 735471, 142506, 1;
1, 7, 1001, 293930, 30421755, 183579396, 5245786, 1;
1, 8, 1820, 1307504, 601080390, 40225345056, 69668534468, 231917400, 1;
1, 9, 3060, 4686825, 7307872110, 3169870830126, 96926348578605, 37387265592825, 11969016345, 1; ...
		

Crossrefs

Cf. A228808 (row sums), A228833 (antidiagonal sums), A135860 (diagonal), A201555 (central terms).
Cf. A229052.
Cf. related triangles: A228904 (exp), A209330, A226234, A228836.

Programs

  • PARI
    {T(n, k)=binomial(n*k, k^2)}
    for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))

A206849 a(n) = Sum_{k=0..n} binomial(n^2, k^2).

Original entry on oeis.org

1, 2, 6, 137, 13278, 4098627, 8002879629, 66818063663192, 1520456935214867934, 167021181249536494996841, 102867734705055054467692090431, 179314863425920182637610314008444247, 1094998941099523423274757578750950802034789
Offset: 0

Views

Author

Paul D. Hanna, Feb 15 2012

Keywords

Examples

			L.g.f.: L(x) = 2*x + 6*x^2/2 + 137*x^3/3 + 13278*x^4/4 + 4098627*x^5/5 +...
where exponentiation yields the g.f. of A206848:
exp(L(x)) = 1 + 2*x + 5*x^2 + 53*x^3 + 3422*x^4 + 826606*x^5 + 1335470713*x^6 +...
Illustration of terms: by definition,
a(1) = C(1,0) + C(1,1);
a(2) = C(4,0) + C(4,1) + C(4,4);
a(3) = C(9,0) + C(9,1) + C(9,4) + C(9,9);
a(4) = C(16,0) + C(16,1) + C(16,4) + C(16,9) + C(16,16);
a(5) = C(25,0) + C(25,1) + C(25,4) + C(25,9) + C(25,16) + C(25,25);
a(6) = C(36,0) + C(36,1) + C(36,4) + C(36,9) + C(36,16) + C(36,25) + C(36,36); ...
Numerically, the above evaluates to be:
a(1) = 1 + 1 = 2;
a(2) = 1 + 4 + 1 = 6;
a(3) = 1 + 9 + 126 + 1 = 137;
a(4) = 1 + 16 + 1820 + 11440 + 1 = 13278;
a(5) = 1 + 25 + 12650 + 2042975 + 2042975 + 1 = 4098627;
a(6) = 1 + 36 + 58905 + 94143280 + 7307872110 + 600805296 + 1 = 8002879629; ...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n^2, k^2],{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Mar 03 2014 *)
  • PARI
    {a(n)=sum(k=0, n,binomial(n^2,k^2))}
    for(n=0, 20, print1(a(n), ", "))

Formula

Ignoring the initial term a(0), equals the logarithmic derivative of A206848.
Equals the row sums of triangle A226234.
From Vaclav Kotesovec, Mar 03 2014: (Start)
Limit n->infinity a(n)^(1/n^2) = 2
Lim sup n->infinity a(n)/(2^(n^2)/n) = sqrt(2/Pi) * JacobiTheta3(0,exp(-4)) = Sqrt[2/Pi] * EllipticTheta[3, 0, 1/E^4] = 0.827112271364145742...
Lim inf n->infinity a(n)/(2^(n^2)/n) = sqrt(2/Pi) * JacobiTheta2(0,exp(-4)) = Sqrt[2/Pi] * EllipticTheta[2, 0, 1/E^4] = 0.587247586271786487...
(End)

A209330 Triangle defined by T(n,k) = binomial(n^2, n*k), for n>=0, k=0..n, as read by rows.

Original entry on oeis.org

1, 1, 1, 1, 6, 1, 1, 84, 84, 1, 1, 1820, 12870, 1820, 1, 1, 53130, 3268760, 3268760, 53130, 1, 1, 1947792, 1251677700, 9075135300, 1251677700, 1947792, 1, 1, 85900584, 675248872536, 39049918716424, 39049918716424, 675248872536, 85900584, 1, 1
Offset: 0

Views

Author

Paul D. Hanna, Mar 06 2012

Keywords

Comments

Column 1 equals A014062.
Row sums equal A167009.
Antidiagonal sums equal A209331.
Ignoring initial row T(0,0), equals the logarithmic derivative of the g.f. of triangle A209196.

Examples

			The triangle of coefficients C(n^2,n*k), n>=k, k=0..n, begins:
1;
1, 1;
1, 6, 1;
1, 84, 84, 1;
1, 1820, 12870, 1820, 1;
1, 53130, 3268760, 3268760, 53130, 1;
1, 1947792, 1251677700, 9075135300, 1251677700, 1947792, 1;
1, 85900584, 675248872536, 39049918716424, 39049918716424, 675248872536, 85900584, 1; ...
		

Crossrefs

Cf. A014062 (column 1), A167009 (row sums), A209331, A209196.
Cf. related triangles: A209196 (exp), A228836, A228832, A226234.
Cf. A206830.

Programs

  • Mathematica
    Table[Binomial[n^2, n*k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Jan 05 2018 *)
  • PARI
    {T(n,k)=binomial(n^2,n*k)}
    for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))

A228836 Triangle defined by T(n,k) = binomial(n^2, (n-k)*k), for n>=0, k=0..n, as read by rows.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 36, 36, 1, 1, 560, 1820, 560, 1, 1, 12650, 177100, 177100, 12650, 1, 1, 376992, 30260340, 94143280, 30260340, 376992, 1, 1, 13983816, 8217822536, 92263734836, 92263734836, 8217822536, 13983816, 1, 1, 621216192, 3284214703056, 159518999862720, 488526937079580, 159518999862720, 3284214703056, 621216192, 1
Offset: 0

Views

Author

Paul D. Hanna, Sep 05 2013

Keywords

Examples

			The triangle of coefficients C(n^2, (n-k)*k), n>=k, k=0..n, begins:
  1;
  1, 1;
  1, 4, 1;
  1, 36, 36, 1;
  1, 560, 1820, 560, 1;
  1, 12650, 177100, 177100, 12650, 1;
  1, 376992, 30260340, 94143280, 30260340, 376992, 1;
  1, 13983816, 8217822536, 92263734836, 92263734836, 8217822536, 13983816, 1;
  ...
		

Crossrefs

Cf. A207136 (row sums), A228837 (antidiagonal sums), A070780 (column 1).
Cf. related triangles: A228900(exp), A209330, A226234, A228832.

Programs

  • Mathematica
    T[n_,k_]:=Binomial[n^2, (n-k)*k]; Table[T[n,k],{n,0,8},{k,0,n}]//Flatten (* Stefano Spezia, Aug 02 2025 *)
  • PARI
    {T(n,k)=binomial(n^2, (n-k)*k)}
    for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))

A228902 Triangle defined by g.f. A(x,y) = exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n^2, k^2) * y^k ), as read by rows.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 6, 45, 1, 1, 10, 505, 2905, 1, 1, 15, 3045, 412044, 411500, 1, 1, 21, 12880, 16106168, 1218805926, 100545716, 1, 1, 28, 43176, 309616264, 479536629727, 9030648908720, 37614371968, 1, 1, 36, 122640, 3752248896, 61545730104024, 50139332516318674, 139855355007409180, 19977489354808, 1
Offset: 0

Views

Author

Paul D. Hanna, Sep 07 2013

Keywords

Examples

			This triangle begins:
  1;
  1, 1;
  1, 3, 1;
  1, 6, 45, 1;
  1, 10, 505, 2905, 1;
  1, 15, 3045, 412044, 411500, 1;
  1, 21, 12880, 16106168, 1218805926, 100545716, 1;
  1, 28, 43176, 309616264, 479536629727, 9030648908720, 37614371968, 1;
  1, 36, 122640, 3752248896, 61545730104024, 50139332516318674, 139855355007409180, 19977489354808, 1;
  ...
G.f.: A(x,y) = 1 + (1+y)*x + (1+3*y+y^2)*x^2 + (1+6*y+45*y^2+y^3)*x^3 + (1+10*y+505*y^2+2905*y^3+y^4)*x^4 + (1+15*y+3045*y^2+412044*y^3+411500*y^4+y^5)*x^5 +...
The logarithm of the g.f. equals the series:
log(A(x,y)) = (1 + y)*x
   + (1 + 4*y + y^2)*x^2/2
   + (1 + 9*y + 126*y^2 + y^3)*x^3/3
   + (1 + 16*y + 1820*y^2 + 11440*y^3 + y^4)*x^4/4
   + (1 + 25*y + 12650*y^2 + 2042975*y^3 + 2042975*y^4 + y^5)*x^5/5
   + (1 + 36*y + 58905*y^2 + 94143280*y^3 + 7307872110*y^4 + 600805296*y^5 + y^6)*x^/6
   + ...
in which the coefficients form A226234(n,k) = binomial(n^2, k^2).
		

Crossrefs

Cf. A206848 (row sums), A206850 (antidiagonal sums), A228903 (diagonal).
Cf. related triangles: A226234 (log), A209196, A228900, A228904.

Programs

  • PARI
    {T(n, k)=polcoeff(polcoeff(exp(sum(m=1, n, x^m/m*sum(j=0, m, binomial(m^2, j^2)*y^j))+x*O(x^n)), n, x), k, y)}
    for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))
Showing 1-5 of 5 results.