cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A228832 Triangle defined by T(n,k) = binomial(n*k, k^2), for n>=0, k=0..n, as read by rows.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 15, 1, 1, 4, 70, 220, 1, 1, 5, 210, 5005, 4845, 1, 1, 6, 495, 48620, 735471, 142506, 1, 1, 7, 1001, 293930, 30421755, 183579396, 5245786, 1, 1, 8, 1820, 1307504, 601080390, 40225345056, 69668534468, 231917400, 1, 1, 9, 3060, 4686825, 7307872110, 3169870830126, 96926348578605, 37387265592825, 11969016345, 1
Offset: 0

Views

Author

Paul D. Hanna, Sep 04 2013

Keywords

Comments

Central coefficients are A201555(n) = C(2*n^2,n^2) = A000984(n^2), where A000984 is the central binomial coefficients.

Examples

			The triangle of coefficients C(n*k, k^2), n>=k, k=0..n, begins:
1;
1, 1;
1, 2, 1;
1, 3, 15, 1;
1, 4, 70, 220, 1;
1, 5, 210, 5005, 4845, 1;
1, 6, 495, 48620, 735471, 142506, 1;
1, 7, 1001, 293930, 30421755, 183579396, 5245786, 1;
1, 8, 1820, 1307504, 601080390, 40225345056, 69668534468, 231917400, 1;
1, 9, 3060, 4686825, 7307872110, 3169870830126, 96926348578605, 37387265592825, 11969016345, 1; ...
		

Crossrefs

Cf. A228808 (row sums), A228833 (antidiagonal sums), A135860 (diagonal), A201555 (central terms).
Cf. A229052.
Cf. related triangles: A228904 (exp), A209330, A226234, A228836.

Programs

  • PARI
    {T(n, k)=binomial(n*k, k^2)}
    for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))

A209330 Triangle defined by T(n,k) = binomial(n^2, n*k), for n>=0, k=0..n, as read by rows.

Original entry on oeis.org

1, 1, 1, 1, 6, 1, 1, 84, 84, 1, 1, 1820, 12870, 1820, 1, 1, 53130, 3268760, 3268760, 53130, 1, 1, 1947792, 1251677700, 9075135300, 1251677700, 1947792, 1, 1, 85900584, 675248872536, 39049918716424, 39049918716424, 675248872536, 85900584, 1, 1
Offset: 0

Views

Author

Paul D. Hanna, Mar 06 2012

Keywords

Comments

Column 1 equals A014062.
Row sums equal A167009.
Antidiagonal sums equal A209331.
Ignoring initial row T(0,0), equals the logarithmic derivative of the g.f. of triangle A209196.

Examples

			The triangle of coefficients C(n^2,n*k), n>=k, k=0..n, begins:
1;
1, 1;
1, 6, 1;
1, 84, 84, 1;
1, 1820, 12870, 1820, 1;
1, 53130, 3268760, 3268760, 53130, 1;
1, 1947792, 1251677700, 9075135300, 1251677700, 1947792, 1;
1, 85900584, 675248872536, 39049918716424, 39049918716424, 675248872536, 85900584, 1; ...
		

Crossrefs

Cf. A014062 (column 1), A167009 (row sums), A209331, A209196.
Cf. related triangles: A209196 (exp), A228836, A228832, A226234.
Cf. A206830.

Programs

  • Mathematica
    Table[Binomial[n^2, n*k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Jan 05 2018 *)
  • PARI
    {T(n,k)=binomial(n^2,n*k)}
    for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))

A207136 a(n) = Sum_{k=0..n} binomial(n^2, k*(n-k)).

Original entry on oeis.org

1, 2, 6, 74, 2942, 379502, 155417946, 200991082378, 814134608643518, 10305926982053248142, 406157795399324680023006, 49758289996116571598723737976, 18917910771770463473290738891259546, 22290399373603219140501180230536732389992
Offset: 0

Views

Author

Paul D. Hanna, Feb 15 2012

Keywords

Comments

Ignoring initial term a(0), equals the logarithmic derivative of A207135.
Equals the row sums of triangle A228836.

Examples

			L.g.f.: L(x) = 2*x + 6*x^2/2 + 74*x^3/3 + 2942*x^4/4 + 379502*x^5/5 +...
where exponentiation equals the g.f. of A207135:
exp(L(x)) = 1 + 2*x + 5*x^2 + 32*x^3 + 796*x^4 + 77508*x^5 +...
By definition, the initial terms begin: a(0) = 1;
a(1) = C(1,0) + C(1,0);
a(2) = C(4,0) + C(4,1) + C(4,0);
a(3) = C(9,0) + C(9,2) + C(9,2) + C(9,0);
a(4) = C(16,0) + C(16,3) + C(16,4) + C(16,3) + C(16,0);
a(5) = C(25,0) + C(25,4) + C(25,6) + C(25,6) + C(25,4) + C(25,0);
a(6) = C(36,0) + C(36,5) + C(36,8) + C(36,9) + C(36,8) + C(36,5) + C(36,0); ...
which is evaluated as:
a(1) = 1 + 1 = 2;
a(2) = 1 + 4 + 1 = 6;
a(3) = 1 + 36 + 36 + 1 = 74;
a(4) = 1 + 560 + 1820 + 560 + 1 = 2942;
a(5) = 1 + 12650 + 177100 + 177100 + 12650 + 1 = 379502;
a(6) = 1 + 376992 + 30260340 + 94143280 + 30260340 + 376992 + 1 = 155417946; ...
		

Crossrefs

Cf. A207135 (exp), A167009, A228836.

Programs

  • Maple
    A207136:=n->add(binomial(n^2, k*(n-k)), k=0..n): seq(A207136(n), n=0..15); # Wesley Ivan Hurt, Jun 23 2015
  • Mathematica
    Table[Sum[Binomial[n^2, k*(n-k)],{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Mar 03 2014 *)
  • PARI
    {a(n)=sum(k=0,n,binomial(n^2,(n-k)*k))}
    for(n=0,20,print1(a(n),", "))

Formula

a(n) ~ c * 2*sqrt(2/(3*Pi)) * (4/3^(3/4))^(n^2)/n, where c = EllipticTheta[3,0,1/3] = JacobiTheta3(0,1/3) = 1.69145968168171534... if n is even, and c = EllipticTheta[2,0,1/3] = JacobiTheta2(0,1/3) = 1.690611203075214233... if n is odd. - Vaclav Kotesovec, Mar 03 2014

A226234 Triangle defined by T(n,k) = binomial(n^2, k^2), for n>=0, k=0..n, as read by rows.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 9, 126, 1, 1, 16, 1820, 11440, 1, 1, 25, 12650, 2042975, 2042975, 1, 1, 36, 58905, 94143280, 7307872110, 600805296, 1, 1, 49, 211876, 2054455634, 3348108992991, 63205303218876, 262596783764, 1, 1, 64, 635376, 27540584512, 488526937079580, 401038568751465792, 1118770292985239888, 159518999862720, 1
Offset: 0

Views

Author

Paul D. Hanna, Aug 24 2013

Keywords

Comments

Row sums equal A206849.
Antidiagonal sums equal A123165.

Examples

			The triangle of coefficients C(n^2,k^2), n>=k, k=0..n, begins:
1;
1, 1;
1, 4, 1;
1, 9, 126, 1;
1, 16, 1820, 11440, 1;
1, 25, 12650, 2042975, 2042975, 1;
1, 36, 58905, 94143280, 7307872110, 600805296, 1;
1, 49, 211876, 2054455634, 3348108992991, 63205303218876, 262596783764, 1;
1, 64, 635376, 27540584512, 488526937079580, 401038568751465792, 1118770292985239888, 159518999862720, 1; ...
		

Crossrefs

Cf. related triangles: A228902(exp), A209330, A228832, A228836.

Programs

  • PARI
    {T(n,k)=binomial(n^2,k^2)}
    for(n=0,9,for(k=0,n,print1(T(n,k),", "));print(""))

A228900 Triangle defined by g.f. A(x,y) = exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n^2, (n-k)*k) * y^k ), as read by rows.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 15, 15, 1, 1, 155, 484, 155, 1, 1, 2685, 36068, 36068, 2685, 1, 1, 65517, 5082340, 15763254, 5082340, 65517, 1, 1, 2063205, 1179126560, 13201421078, 13201421078, 1179126560, 2063205, 1, 1, 79715229, 411708127954, 19954261054442, 61092286569334, 19954261054442, 411708127954, 79715229, 1
Offset: 0

Views

Author

Paul D. Hanna, Sep 07 2013

Keywords

Examples

			This triangle begins:
1;
1, 1;
1, 3, 1;
1, 15, 15, 1;
1, 155, 484, 155, 1;
1, 2685, 36068, 36068, 2685, 1;
1, 65517, 5082340, 15763254, 5082340, 65517, 1;
1, 2063205, 1179126560, 13201421078, 13201421078, 1179126560, 2063205, 1;
1, 79715229, 411708127954, 19954261054442, 61092286569334, 19954261054442, 411708127954, 79715229, 1;
...
G.f.: A(x,y) = 1 + (1+y)*x + (1+3*y+y^2)*x^2 + (1+15*y+15*y^2+y^3)*x^3 + (1+155*y+484*y^2+155*y^3+y^4)*x^4 + (1+2685*y+36068*y^2+36068*y^3+2685*y^4+y^5)*x^5 +...
The logarithm of the g.f. equals the series:
log(A(x,y)) = (1 + y)*x
+ (1 + 4*y + y^2)*x^2/2
+ (1 + 36*y + 36*y^2 + y^3)*x^3/3
+ (1 + 560*y + 1820*y^2 + 560*y^3 + y^4)*x^4/4
+ (1 + 12650*y + 177100*y^2 + 177100*y^3 + 12650*y^4 + y^5)*x^5/5
+ (1 + 376992*y + 30260340*y^2 + 94143280*y^3 + 30260340*y^4 + 376992*y^5 + y^6)*x^6/6 +...
in which the coefficients form A228836(n,k) = binomial(n^2, (n-k)*k).
		

Crossrefs

Cf. A207135 (row sums), A207137 (antidiagonal sums), A228901 (column 1).
Cf. related triangles: A228836 (log), A209196, A228902, A228904.

Programs

  • PARI
    {T(n, k)=polcoeff(polcoeff(exp(sum(m=1, n, x^m/m*sum(j=0, m, binomial(m^2, (m-j)*j)*y^j))+x*O(x^n)), n, x), k, y)}
    for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))

A228837 a(n) = Sum_{k=0..[n/2]} binomial((n-k)^2, (n-2*k)*k).

Original entry on oeis.org

1, 1, 2, 5, 38, 597, 14472, 554653, 44421258, 8933194659, 3408672951784, 1984802013951149, 1803179670478111304, 3323206887194925488269, 15156709454119350064982141, 132889643918499982093215167857, 1784438297905511051093397284187186
Offset: 0

Views

Author

Paul D. Hanna, Sep 05 2013

Keywords

Comments

Equals the antidiagonal sums of triangle A228836.

Crossrefs

Cf. variants: A209331, A228833, A123165.

Programs

  • Mathematica
    Table[Sum[Binomial[(n-k)^2, (n-2*k)*k],{k,0,Floor[n/2]}],{n,0,15}] (* Vaclav Kotesovec, Sep 05 2013 *)
  • PARI
    {a(n)=sum(k=0,n\2,binomial((n-k)^2, (n-2*k)*k))}
    for(n=0,30,print1(a(n),", "))

Formula

Limit n->infinity a(n)^(1/n^2) = ((1-r)^2/(r*(1-2*r)))^((1-3*r)*(1-r)/(3*(1-2*r))) = 1.36198508972775011599..., where r = 0.195220321930105755... is the root of the equation (1-3*r+3*r^2)^(3*(2*r-1)) = (r*(1-2*r))^(4*r-1) * (1-r)^(4*(r-1)). - Vaclav Kotesovec, added Sep 05 2013, simplified Mar 04 2014
Showing 1-6 of 6 results.