A228836
Triangle defined by T(n,k) = binomial(n^2, (n-k)*k), for n>=0, k=0..n, as read by rows.
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 36, 36, 1, 1, 560, 1820, 560, 1, 1, 12650, 177100, 177100, 12650, 1, 1, 376992, 30260340, 94143280, 30260340, 376992, 1, 1, 13983816, 8217822536, 92263734836, 92263734836, 8217822536, 13983816, 1, 1, 621216192, 3284214703056, 159518999862720, 488526937079580, 159518999862720, 3284214703056, 621216192, 1
Offset: 0
The triangle of coefficients C(n^2, (n-k)*k), n>=k, k=0..n, begins:
1;
1, 1;
1, 4, 1;
1, 36, 36, 1;
1, 560, 1820, 560, 1;
1, 12650, 177100, 177100, 12650, 1;
1, 376992, 30260340, 94143280, 30260340, 376992, 1;
1, 13983816, 8217822536, 92263734836, 92263734836, 8217822536, 13983816, 1;
...
-
T[n_,k_]:=Binomial[n^2, (n-k)*k]; Table[T[n,k],{n,0,8},{k,0,n}]//Flatten (* Stefano Spezia, Aug 02 2025 *)
-
{T(n,k)=binomial(n^2, (n-k)*k)}
for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))
A207135
G.f.: exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n^2, k*(n-k)) ).
Original entry on oeis.org
1, 2, 5, 32, 796, 77508, 26058970, 28765221688, 101824384364586, 1145306676113095172, 40618070255705049577152, 4523562146025746408072408406, 1576501611479138389748204925102907, 1714649258669533421310212170714443813118
Offset: 0
G.f.: A(x) = 1 + 2*x + 5*x^2 + 32*x^3 + 796*x^4 + 77508*x^5 +...
where the logarithm of the g.f. equals the l.g.f. of A207136:
log(A(x)) = 2*x + 6*x^2/2 + 74*x^3/3 + 2942*x^4/4 + 379502*x^5/5 +...
-
{a(n)=polcoeff(exp(sum(m=1,n,x^m/m*sum(k=0,m,binomial(m^2,k*(m-k))))+x*O(x^n)),n)}
for(n=0,20,print1(a(n),", "))
A228808
a(n) = Sum_{k=0..n} binomial(n*k, k^2).
Original entry on oeis.org
1, 2, 4, 20, 296, 10067, 927100, 219541877, 110728186648, 137502766579907, 448577320868198789, 3169529341990169816462, 51243646781214826181569316, 2201837465728010770618930322223, 215520476721579201896200887266792583, 45634827026091489574547858030506357191920
Offset: 0
L.g.f.: L(x) = 2*x + 4*x^2/2 + 20*x^3/3 + 296*x^4/4 + 10067*x^5/5 +...
where
exp(L(x)) = 1 + 2*x + 4*x^2 + 12*x^3 + 94*x^4 + 2195*x^5 + 158904*x^6 + 31681195*x^7 +...+ A228809(n)*x^n +...
-
Table[Sum[Binomial[n*k, k^2],{k,0,n}],{n,0,15}] (* Vaclav Kotesovec, Sep 06 2013 *)
-
a(n)=sum(k=0,n,binomial(n*k,k^2))
for(n=0,20,print1(a(n),", "))
A238696
a(n) = Sum_{k=0..floor(n/2)} binomial(n*(n-k), n*k).
Original entry on oeis.org
1, 1, 2, 21, 497, 18508, 3297933, 2348121769, 2319121509374, 4535739243360613, 58887253765506968848, 1694438232474931034462251, 64598311562133275526222276162, 8312693334404799592869803398802772, 5827069387752679429926992257426553147833
Offset: 0
-
Table[Sum[Binomial[n*(n-k), n*k], {k, 0, Floor[n/2]}], {n, 0, 20}]
-
a(n)=sum(k=0,n\2, binomial(n*(n-k), n*k)) \\ Charles R Greathouse IV, Jul 29 2016
A207138
L.g.f.: Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n^2, k*(n-k))*x^k = Sum_{n>=1} a(n)*x^n/n.
Original entry on oeis.org
1, 3, 7, 51, 761, 17913, 688745, 56611987, 11405877739, 4272862207703, 2450039810788461, 2224842228379519641, 4169966883810355864393, 19139862395982576668262825, 166161479603614500915921996017, 2206856314384330228779059994929555
Offset: 1
L.g.f.: L(x) = x + 3*x^2/2 + 7*x^3/3 + 51*x^4/4 + 761*x^5/5 + 17913*x^6/6 +...
where exponentiation equals the g.f. of A207137:
exp(L(x)) = 1 + x + 2*x^2 + 4*x^3 + 17*x^4 + 171*x^5 + 3171*x^6 +...
To illustrate the definition, the l.g.f. equals the series:
L(x) = (1 + x)*x + (1 + 4*x + 1*x^2)*x^2/2
+ (1 + 36*x + 36*x^2 + 1*x^3)*x^3/3
+ (1 + 560*x + 1820*x^2 + 560*x^3 + 1*x^4)*x^4/4
+ (1 + 12650*x + 177100*x^2 + 177100*x^3 + 12650*x^4 + 1*x^5)*x^5/5
+ (1 + 376992*x + 30260340*x^2 + 94143280*x^3 + 30260340*x^4 + 376992*x^5 + 1*x^6)*x^6/6 +...
-
Table[n*Sum[Binomial[(n-k)^2, k*(n-2*k)]/(n-k),{k,0,Floor[n/2]}],{n,1,20}] (* Vaclav Kotesovec, Mar 04 2014 *)
-
{a(n)=n*polcoeff(sum(m=1,n+1,x^m/m*sum(k=0,m,binomial(m^2, k*(m-k))*x^k))+x*O(x^n),n)}
-
{a(n)=n*sum(k=0,n\2,binomial((n-k)^2,k*(n-2*k))/(n-k))}
for(n=1,20,print1(a(n),", "))
A207140
a(n) = Sum_{k=0..n} binomial(n,k) * binomial(n^2,k^2).
Original entry on oeis.org
1, 2, 10, 407, 56746, 30771252, 115106662819, 1446405270234360, 53819202633553797290, 12313337704248075967333334, 12373818231445938048765251252260, 33156027144321617106970597265032233270, 409476940913917468665022448013012674533441891
Offset: 0
L.g.f.: L(x) = 2*x + 10*x^2/2 + 407*x^3/3 + 56746*x^4/4 + 30771252*x^5/5 +...
where exponentiation equals the g.f. of A207139:
exp(L(x)) = 1 + 2*x + 7*x^2 + 147*x^3 + 14481*x^4 + 6183605*x^5 +...
By definition, the initial terms begin: a(0) = 1;
a(1) = C(1,0)*C(1,0), + C(1,1)*C(1,1);
a(2) = C(2,0)*C(4,0), + C(2,1)*C(4,1), + C(2,2)*C(4,4);
a(3) = C(3,0)*C(9,0), + C(3,1)*C(9,1), + C(3,2)*C(9,4), + C(3,3)*C(9,9);
a(4) = C(4,0)*C(16,0), + C(4,1)*C(16,1), + C(4,2)*C(16,4), + C(4,3)*C(16,9), + C(4,4)*C(16,16); ...
which is evaluated as:
a(1) = 1*1 + 1*1 = 2;
a(2) = 1*1 + 2*4 + 1*1 = 10;
a(3) = 1*1 + 3*9 + 3*126 + 1*1 = 407;
a(4) = 1*1 + 4*16 + 6*1820 + 4*11440 + 1*1 = 56746;
a(5) = 1*1 + 5*25 + 10*12650 + 10*2042975 + 5*2042975 + 1*1 = 30771252;
a(6) = 1*1 + 6*36 + 15*58905 + 20*94143280 + 15*7307872110 + 6*600805296 + 1*1 = 115106662819; ...
-
Table[Sum[Binomial[n,k] * Binomial[n^2,k^2], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 03 2014 *)
-
{a(n)=sum(k=0,n,binomial(n,k)*binomial(n^2,k^2))}
for(n=0,16,print1(a(n),", "))
A228852
G.f.: exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n^2, k*(n-k))/2 ).
Original entry on oeis.org
1, 1, 2, 14, 382, 38344, 12990279, 14369538529, 50897796053428, 572602411324905786, 20308462423438736818782, 2261760763404526386241849803, 788248543938180828988762846368690, 857323841081698966408121705146996762240, 2905542652088907570108828021890682181041282730
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 14*x^3 + 382*x^4 + 38344*x^5 + 12990279*x^6 +...
where
log(A(x)) = x + 3*x^2/2 + 37*x^3/3 + 1471*x^4/4 + 189751*x^5/5 + 77708973*x^6/6 +...+ A207136(n)/2 * x^n/n +...
-
{a(n)=polcoeff(exp(sum(m=1, n, x^m/m*sum(k=0, m, binomial(m^2, k*(m-k))/2))+x*O(x^n)), n)}
for(n=0, 20, print1(a(n), ", "))
Showing 1-7 of 7 results.
Comments