cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A228836 Triangle defined by T(n,k) = binomial(n^2, (n-k)*k), for n>=0, k=0..n, as read by rows.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 36, 36, 1, 1, 560, 1820, 560, 1, 1, 12650, 177100, 177100, 12650, 1, 1, 376992, 30260340, 94143280, 30260340, 376992, 1, 1, 13983816, 8217822536, 92263734836, 92263734836, 8217822536, 13983816, 1, 1, 621216192, 3284214703056, 159518999862720, 488526937079580, 159518999862720, 3284214703056, 621216192, 1
Offset: 0

Views

Author

Paul D. Hanna, Sep 05 2013

Keywords

Examples

			The triangle of coefficients C(n^2, (n-k)*k), n>=k, k=0..n, begins:
  1;
  1, 1;
  1, 4, 1;
  1, 36, 36, 1;
  1, 560, 1820, 560, 1;
  1, 12650, 177100, 177100, 12650, 1;
  1, 376992, 30260340, 94143280, 30260340, 376992, 1;
  1, 13983816, 8217822536, 92263734836, 92263734836, 8217822536, 13983816, 1;
  ...
		

Crossrefs

Cf. A207136 (row sums), A228837 (antidiagonal sums), A070780 (column 1).
Cf. related triangles: A228900(exp), A209330, A226234, A228832.

Programs

  • Mathematica
    T[n_,k_]:=Binomial[n^2, (n-k)*k]; Table[T[n,k],{n,0,8},{k,0,n}]//Flatten (* Stefano Spezia, Aug 02 2025 *)
  • PARI
    {T(n,k)=binomial(n^2, (n-k)*k)}
    for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))

A207135 G.f.: exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n^2, k*(n-k)) ).

Original entry on oeis.org

1, 2, 5, 32, 796, 77508, 26058970, 28765221688, 101824384364586, 1145306676113095172, 40618070255705049577152, 4523562146025746408072408406, 1576501611479138389748204925102907, 1714649258669533421310212170714443813118
Offset: 0

Views

Author

Paul D. Hanna, Feb 15 2012

Keywords

Comments

The logarithmic derivative yields A207136.
Equals the row sums of triangle A228900.
Equals the self-convolution of A228852.

Examples

			G.f.: A(x) = 1 + 2*x + 5*x^2 + 32*x^3 + 796*x^4 + 77508*x^5 +...
where the logarithm of the g.f. equals the l.g.f. of A207136:
log(A(x)) = 2*x + 6*x^2/2 + 74*x^3/3 + 2942*x^4/4 + 379502*x^5/5 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n,x^m/m*sum(k=0,m,binomial(m^2,k*(m-k))))+x*O(x^n)),n)}
    for(n=0,20,print1(a(n),", "))

A228808 a(n) = Sum_{k=0..n} binomial(n*k, k^2).

Original entry on oeis.org

1, 2, 4, 20, 296, 10067, 927100, 219541877, 110728186648, 137502766579907, 448577320868198789, 3169529341990169816462, 51243646781214826181569316, 2201837465728010770618930322223, 215520476721579201896200887266792583, 45634827026091489574547858030506357191920
Offset: 0

Views

Author

Paul D. Hanna, Sep 04 2013

Keywords

Comments

Ignoring initial term, equals the logarithmic derivative of A228809.
Equals row sums of triangle A228832.

Examples

			L.g.f.: L(x) = 2*x + 4*x^2/2 + 20*x^3/3 + 296*x^4/4 + 10067*x^5/5 +...
where
exp(L(x)) = 1 + 2*x + 4*x^2 + 12*x^3 + 94*x^4 + 2195*x^5 + 158904*x^6 + 31681195*x^7 +...+ A228809(n)*x^n +...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n*k, k^2],{k,0,n}],{n,0,15}] (* Vaclav Kotesovec, Sep 06 2013 *)
  • PARI
    a(n)=sum(k=0,n,binomial(n*k,k^2))
    for(n=0,20,print1(a(n),", "))

Formula

Limit n->infinity a(n)^(1/n^2) = (1-r)^(-r/2) = 1.533628065110458582053143..., where r = A220359 = 0.70350607643066243... is the root of the equation (1-r)^(2*r-1) = r^(2*r). - Vaclav Kotesovec, Sep 06 2013

A238696 a(n) = Sum_{k=0..floor(n/2)} binomial(n*(n-k), n*k).

Original entry on oeis.org

1, 1, 2, 21, 497, 18508, 3297933, 2348121769, 2319121509374, 4535739243360613, 58887253765506968848, 1694438232474931034462251, 64598311562133275526222276162, 8312693334404799592869803398802772, 5827069387752679429926992257426553147833
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 03 2014

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n*(n-k), n*k], {k, 0, Floor[n/2]}], {n, 0, 20}]
  • PARI
    a(n)=sum(k=0,n\2, binomial(n*(n-k), n*k)) \\ Charles R Greathouse IV, Jul 29 2016

Formula

Maximum is at k = n*(1-1/sqrt(5))/2 = 0.2763932... * n.
Limit n->infinity a(n)^(1/n^2) = (1+sqrt(5))/2.
Lim sup n->infinity a(n) / (5^(1/4)/(n*sqrt(2*Pi))*((1+sqrt(5))/2)^(n^2+1)) = JacobiTheta3(0,exp(-5*sqrt(5)/2)) = EllipticTheta[3,0,Exp[-5*Sqrt[5]/2]] = 1.007468786736926147579...
Lim inf n->infinity a(n) / (5^(1/4)/(n*sqrt(2*Pi))*((1+sqrt(5))/2)^(n^2+1)) = JacobiTheta2(0,exp(-5*sqrt(5)/2)) = EllipticTheta[2,0,Exp[-5*Sqrt[5]/2]] = 0.494414344263155315970...
a(n) = [x^(n^2)] (1-x)^(n-1)/((1-x)^n - x^(2*n)) for n > 0. - Seiichi Manyama, Oct 11 2021

A207138 L.g.f.: Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n^2, k*(n-k))*x^k = Sum_{n>=1} a(n)*x^n/n.

Original entry on oeis.org

1, 3, 7, 51, 761, 17913, 688745, 56611987, 11405877739, 4272862207703, 2450039810788461, 2224842228379519641, 4169966883810355864393, 19139862395982576668262825, 166161479603614500915921996017, 2206856314384330228779059994929555
Offset: 1

Views

Author

Paul D. Hanna, Feb 15 2012

Keywords

Comments

Equals the logarithmic derivative of A207137.

Examples

			L.g.f.: L(x) =  x + 3*x^2/2 + 7*x^3/3 + 51*x^4/4 + 761*x^5/5 + 17913*x^6/6 +...
where exponentiation equals the g.f. of A207137:
exp(L(x)) = 1 + x + 2*x^2 + 4*x^3 + 17*x^4 + 171*x^5 + 3171*x^6 +...
To illustrate the definition, the l.g.f. equals the series:
L(x) = (1 + x)*x + (1 + 4*x + 1*x^2)*x^2/2
+ (1 + 36*x + 36*x^2 + 1*x^3)*x^3/3
+ (1 + 560*x + 1820*x^2 + 560*x^3 + 1*x^4)*x^4/4
+ (1 + 12650*x + 177100*x^2 + 177100*x^3 + 12650*x^4 + 1*x^5)*x^5/5
+ (1 + 376992*x + 30260340*x^2 + 94143280*x^3 + 30260340*x^4 + 376992*x^5 + 1*x^6)*x^6/6 +...
		

Crossrefs

Programs

  • Mathematica
    Table[n*Sum[Binomial[(n-k)^2, k*(n-2*k)]/(n-k),{k,0,Floor[n/2]}],{n,1,20}] (* Vaclav Kotesovec, Mar 04 2014 *)
  • PARI
    {a(n)=n*polcoeff(sum(m=1,n+1,x^m/m*sum(k=0,m,binomial(m^2, k*(m-k))*x^k))+x*O(x^n),n)}
    
  • PARI
    {a(n)=n*sum(k=0,n\2,binomial((n-k)^2,k*(n-2*k))/(n-k))}
    for(n=1,20,print1(a(n),", "))

Formula

a(n) = n*Sum_{k=0..[n/2]} binomial((n-k)^2, k*(n-2*k))/(n-k).
Limit n->infinity a(n)^(1/n^2) = ((1-r)^2/(r*(1-2*r)))^((1-3*r)*(1-r)/(3*(1-2*r))) = 1.36198508972775011599..., where r = 0.195220321930105755... is the root of the equation (1-3*r+3*r^2)^(3*(2*r-1)) = (r*(1-2*r))^(4*r-1) * (1-r)^(4*(r-1)). - Vaclav Kotesovec, Mar 04 2014

A207140 a(n) = Sum_{k=0..n} binomial(n,k) * binomial(n^2,k^2).

Original entry on oeis.org

1, 2, 10, 407, 56746, 30771252, 115106662819, 1446405270234360, 53819202633553797290, 12313337704248075967333334, 12373818231445938048765251252260, 33156027144321617106970597265032233270, 409476940913917468665022448013012674533441891
Offset: 0

Views

Author

Paul D. Hanna, Feb 15 2012

Keywords

Comments

Ignoring initial term a(0), equals the logarithmic derivative of A207139.

Examples

			L.g.f.: L(x) = 2*x + 10*x^2/2 + 407*x^3/3 + 56746*x^4/4 + 30771252*x^5/5 +...
where exponentiation equals the g.f. of A207139:
exp(L(x)) = 1 + 2*x + 7*x^2 + 147*x^3 + 14481*x^4 + 6183605*x^5 +...
By definition, the initial terms begin: a(0) = 1;
a(1) = C(1,0)*C(1,0), + C(1,1)*C(1,1);
a(2) = C(2,0)*C(4,0), + C(2,1)*C(4,1), + C(2,2)*C(4,4);
a(3) = C(3,0)*C(9,0), + C(3,1)*C(9,1), + C(3,2)*C(9,4), + C(3,3)*C(9,9);
a(4) = C(4,0)*C(16,0), + C(4,1)*C(16,1), + C(4,2)*C(16,4), + C(4,3)*C(16,9), + C(4,4)*C(16,16); ...
which is evaluated as:
a(1) = 1*1 + 1*1 = 2;
a(2) = 1*1 + 2*4 + 1*1 = 10;
a(3) = 1*1 + 3*9 + 3*126 + 1*1 = 407;
a(4) = 1*1 + 4*16 + 6*1820 + 4*11440 + 1*1 = 56746;
a(5) = 1*1 + 5*25 + 10*12650 + 10*2042975 + 5*2042975 + 1*1 = 30771252;
a(6) = 1*1 + 6*36 + 15*58905 + 20*94143280 + 15*7307872110 + 6*600805296 + 1*1 = 115106662819; ...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n,k] * Binomial[n^2,k^2], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 03 2014 *)
  • PARI
    {a(n)=sum(k=0,n,binomial(n,k)*binomial(n^2,k^2))}
    for(n=0,16,print1(a(n),", "))

Formula

Limit n->infinity a(n)^(1/n^2) = 2. - Vaclav Kotesovec, Mar 03 2014

A228852 G.f.: exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n^2, k*(n-k))/2 ).

Original entry on oeis.org

1, 1, 2, 14, 382, 38344, 12990279, 14369538529, 50897796053428, 572602411324905786, 20308462423438736818782, 2261760763404526386241849803, 788248543938180828988762846368690, 857323841081698966408121705146996762240, 2905542652088907570108828021890682181041282730
Offset: 0

Views

Author

Paul D. Hanna, Sep 05 2013

Keywords

Comments

Self-convolution yields A207135.

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 14*x^3 + 382*x^4 + 38344*x^5 + 12990279*x^6 +...
where
log(A(x)) = x + 3*x^2/2 + 37*x^3/3 + 1471*x^4/4 + 189751*x^5/5 + 77708973*x^6/6 +...+ A207136(n)/2 * x^n/n +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n, x^m/m*sum(k=0, m, binomial(m^2, k*(m-k))/2))+x*O(x^n)), n)}
    for(n=0, 20, print1(a(n), ", "))
Showing 1-7 of 7 results.