cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A003099 a(n) = Sum_{k=0..n} binomial(n,k^2).

Original entry on oeis.org

1, 2, 3, 4, 6, 11, 22, 43, 79, 137, 231, 397, 728, 1444, 3018, 6386, 13278, 26725, 51852, 97243, 177671, 320286, 579371, 1071226, 2053626, 4098627, 8451288, 17742649, 37352435, 77926452, 159899767, 321468048, 632531039, 1219295320, 2308910353, 4314168202
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Partial sums of A103198.

Programs

  • Magma
    [(&+[Binomial(n, j^2): j in [0..n]]): n in [0..50]]; // G. C. Greubel, Oct 26 2022
    
  • Mathematica
    Table[Sum[Binomial[n, k^2], {k, 0, Sqrt[n]}], {n, 0, 50}] (* T. D. Noe, Sep 10 2011 *)
  • PARI
    a(n)=sum(k=0,sqrtint(n),binomial(n,k^2)) \\ Charles R Greathouse IV, Mar 26 2013
    
  • SageMath
    def A003099(n): return sum( binomial(n,k^2) for k in range(isqrt(n)+1))
    [A003099(n) for n in range(50)] # G. C. Greubel, Oct 26 2022

Formula

a(n)*sqrt(n)/2^n is bounded: lim sup a(n)*sqrt(n)/2^n = 0.82... and lim inf a(n)*sqrt(n)/2^n = 0.58... - Benoit Cloitre, Nov 14 2003 [These constants are sqrt(2/Pi) * JacobiTheta3(0,exp(-4)) = 0.827112271364145742... and sqrt(2/Pi) * JacobiTheta2(0,exp(-4)) = 0.587247586271786487... - Vaclav Kotesovec, Jan 15 2023]
Binomial transform of the characteristic function of squares A010052. - Carl Najafi, Sep 09 2011
G.f.: (1/(1 - x)) * Sum_{k>=0} (x/(1 - x))^(k^2). - Ilya Gutkovskiy, Jan 22 2024

Extensions

More terms from Carl Najafi, Sep 09 2011

A206851 L.g.f.: Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n^2, k^2)*x^k = Sum_{n>=1} a(n)*x^n/n.

Original entry on oeis.org

1, 3, 7, 15, 231, 2763, 37773, 3347359, 145164760, 15115517783, 5300285945494, 841490209145991, 700215432847179640, 821522962294608211319, 580955012898669141073842, 3240132942509582109732641935, 12114306457535986210506222037102
Offset: 1

Views

Author

Paul D. Hanna, Feb 15 2012

Keywords

Comments

Equals the logarithmic derivative of A206850.

Examples

			L.g.f.: L(x) = x + 3*x^2/2 + 7*x^3/3 + 15*x^4/4 + 231*x^5/5 + 2763*x^6/6 +...
where exponentiation yields the g.f. of A206850:
exp(L(x)) = 1 + x + 2*x^2 + 4*x^3 + 8*x^4 + 56*x^5 + 522*x^6 + 5972*x^7 +...
By definition, the l.g.f. equals the series:
L(x) = (C(1,0) + C(1,1)*x)*x
+ (C(4,0) + C(4,1)*x + C(4,4)*x^2)*x^2/2
+ (C(9,0) + C(9,1)*x + C(9,4)*x^2 + C(9,9)*x^3)*x^3/3
+ (C(16,0) + C(16,1)*x + C(16,4)*x^2 + C(16,9)*x^3 + C(16,16)*x^4)*x^4/4
+ (C(25,0) + C(25,1)*x + C(25,4)*x^2 + C(25,9)*x^3 + C(25,16)*x^4 + C(25,25)*x^5)*x^5/5 +...
More explicitly,
L(x) = (1 + 1*x)*x + (1 + 4*x + 1*x^2)*x^2/2
+ (1 + 9*x + 126*x^2 + 1*x^3)*x^3/3
+ (1 + 16*x + 1820*x^2 + 11440*x^3 + 1*x^4)*x^4/4
+ (1 + 25*x + 12650*x^2 + 2042975*x^3 + 2042975*x^4 + 1*x^5)*x^5/5
+ (1 + 36*x + 58905*x^2 + 94143280*x^3 + 7307872110*x^4 + 600805296*x^5 + 1*x^6)*x^6/6 +...
		

Crossrefs

Programs

  • Mathematica
    Table[n*Sum[Binomial[(n-k)^2, k^2]/(n-k),{k,0,Floor[n/2]}], {n, 1, 20}] (* Vaclav Kotesovec, Mar 03 2014 *)
  • PARI
    {a(n)=n*polcoeff(sum(m=1,n,x^m/m*sum(k=0,m,binomial(m^2,k^2)*x^k)+x*O(x^n)),n)}
    
  • PARI
    {a(n)=n*sum(k=0,n\2, binomial((n-k)^2, k^2)/(n-k))}
    for(n=1, 20, print1(a(n), ", "))

Formula

a(n) = n * Sum_{k=0..[n/2]} binomial((n-k)^2, k^2)/(n-k).
Limit n->infinity a(n)^(1/n^2) = (1-2*r)^r / r^(2*r) = 1.2915356633069917227119166349..., where r = A323778 = 0.365498498219858044579... is the root of the equation (1-r)^(2-2*r) * r^(2*r) = 1-2*r. - Vaclav Kotesovec, Mar 03 2014

A206848 G.f.: exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n^2, k^2) ).

Original entry on oeis.org

1, 2, 5, 53, 3422, 826606, 1335470713, 9548109569885, 190076214495558260, 18558289189760778318731, 10286810587274357297985552184, 16301371794177939084545371104827679, 91249944361047494534207504939405352235731, 3283593155431496336538359592977826684908598341441
Offset: 0

Views

Author

Paul D. Hanna, Feb 15 2012

Keywords

Comments

Logarithmic derivative yields A206849.
Equals row sums of triangle A228902.

Examples

			G.f.: A(x) = 1 + 2*x + 5*x^2 + 53*x^3 + 3422*x^4 + 826606*x^5 + 1335470713*x^6 +...
where the logarithm of the g.f. yields the l.g.f. of A206849:
log(A(x)) = 2*x + 6*x^2/2 + 137*x^3/3 + 13278*x^4/4 + 4098627*x^5/5 +...
		

Crossrefs

Cf. variants: A167006, A228809.

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n, sum(k=0, m, binomial(m^2,k^2))*x^m/m)+x*O(x^n)), n)}
    for(n=0, 25, print1(a(n), ", "))

A226234 Triangle defined by T(n,k) = binomial(n^2, k^2), for n>=0, k=0..n, as read by rows.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 9, 126, 1, 1, 16, 1820, 11440, 1, 1, 25, 12650, 2042975, 2042975, 1, 1, 36, 58905, 94143280, 7307872110, 600805296, 1, 1, 49, 211876, 2054455634, 3348108992991, 63205303218876, 262596783764, 1, 1, 64, 635376, 27540584512, 488526937079580, 401038568751465792, 1118770292985239888, 159518999862720, 1
Offset: 0

Views

Author

Paul D. Hanna, Aug 24 2013

Keywords

Comments

Row sums equal A206849.
Antidiagonal sums equal A123165.

Examples

			The triangle of coefficients C(n^2,k^2), n>=k, k=0..n, begins:
1;
1, 1;
1, 4, 1;
1, 9, 126, 1;
1, 16, 1820, 11440, 1;
1, 25, 12650, 2042975, 2042975, 1;
1, 36, 58905, 94143280, 7307872110, 600805296, 1;
1, 49, 211876, 2054455634, 3348108992991, 63205303218876, 262596783764, 1;
1, 64, 635376, 27540584512, 488526937079580, 401038568751465792, 1118770292985239888, 159518999862720, 1; ...
		

Crossrefs

Cf. related triangles: A228902(exp), A209330, A228832, A228836.

Programs

  • PARI
    {T(n,k)=binomial(n^2,k^2)}
    for(n=0,9,for(k=0,n,print1(T(n,k),", "));print(""))

A227403 a(n) = Sum_{k=0..n} binomial(n^2, n*k) * binomial(n*k, k^2).

Original entry on oeis.org

1, 2, 14, 1514, 1308582, 17304263902, 1362702892177706, 1323407909279927430346, 11218363871234340925730020646, 637467717878006909442727527733810142, 519660435252919757259949810325837093364580014, 2289503386759572781844843312201361014103189493095636611
Offset: 0

Views

Author

Paul D. Hanna, Sep 20 2013

Keywords

Examples

			The following triangles illustrate the terms involved in the sum
a(n) = Sum_{k=0..n} A209330(n,k) * A228832(n,k).
Triangle A209330(n,k) = binomial(n^2, n*k) begins:
1;
1, 1;
1, 6, 1;
1, 84, 84, 1;
1, 1820, 12870, 1820, 1;
1, 53130, 3268760, 3268760, 53130, 1;
1, 1947792, 1251677700, 9075135300, 1251677700, 1947792, 1;
...
Triangle A228832(n,k) = binomial(n*k, k^2) begins:
1;
1, 1;
1, 2, 1;
1, 3, 15, 1;
1, 4, 70, 220, 1;
1, 5, 210, 5005, 4845, 1;
1, 6, 495, 48620, 735471, 142506, 1; ...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n^2,n*k]*Binomial[n*k,k^2],{k,0,n}],{n,0,10}] (* Vaclav Kotesovec, Sep 21 2013 *)
    r^(-(1+r)^2/(2*r))/.FindRoot[(1-r)^(2*r) == r^(2*r+1), {r,1/2}, WorkingPrecision->50] (* program for numerical value of the limit n->infinity a(n)^(1/n^2), Vaclav Kotesovec, Sep 21 2013 *)
  • PARI
    {a(n)=sum(k=0, n, binomial(n^2, n*k)*binomial(n*k, k^2))}
    for(n=0,20,print1(a(n),", "))

Formula

a(n) = Sum_{k=0..n} (n^2)! / ( (n^2-n*k)! * (n*k-k^2)! * (k^2)! ).
Limit n->infinity a(n)^(1/n^2) = r^(-(1+r)^2/(2*r)) = 2.93544172048274..., where r = 0.6032326837741362... (see A237421) is the root of the equation (1-r)^(2*r) = r^(2*r+1). - Vaclav Kotesovec, Sep 21 2013

A206847 a(n) = Sum_{k=0..n} binomial(n^2, k^2) * binomial(n^2, (n-k)^2).

Original entry on oeis.org

1, 2, 18, 2270, 3678482, 51789416252, 9723940840418814, 13783866167176942874214, 260749663122506218247699587346, 35385577627626083328957267246097557212, 64138056102285851525440919122006580387539950268, 814449089808478655249485968539593253265395820497817710866
Offset: 0

Views

Author

Paul D. Hanna, Feb 15 2012

Keywords

Comments

Ignoring the initial term a(0), equals the logarithmic derivative of A206846.

Examples

			L.g.f.: L(x) = 2*x + 18*x^2/2 + 2270*x^3/3 + 3678482*x^4/4 + 51789416252*x^5/5 +...
where exponentiation yields the g.f. of A206846:
exp(L(x)) = 1 + 2*x + 11*x^2 + 776*x^3 + 921193*x^4 + 10359730908*x^5 +...
Illustration of terms: by definition,
a(1) = C(1,0)*C(1,1) + C(1,1)*C(1,0);
a(2) = C(4,0)*C(4,4) + C(4,1)*C(4,1) + C(4,4)*C(4,0);
a(3) = C(9,0)*C(9,9) + C(9,1)*C(9,4) + C(9,4)*C(9,1) + C(9,9)*C(9,0);
a(4) = C(16,0)*C(16,16) + C(16,1)*C(16,9) + C(16,4)*C(16,4) + C(16,9)*C(16,1) + C(16,16)*C(16,0); ...
Numerically, the above evaluates to be:
a(1) = 1*1 + 1*1 = 2;
a(2) = 1*1 + 4*4 + 1*1 = 18;
a(3) = 1*1 + 9*126 + 126*9 + 1*1 = 2270;
a(4) = 1*1 + 16*11440 + 1820*1820 + 11440*16 + 1*1 = 3678482;
a(5) = 1*1 + 25*2042975 + 12650*2042975 + 2042975*12650 + 2042975*25 + 1*1 = 51789416252; ...
		

Crossrefs

Cf. A206846 (exp), A206849, A206851.

Programs

  • Mathematica
    Table[Sum[Binomial[n^2, k^2] * Binomial[n^2, (n-k)^2], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 03 2014 *)
  • PARI
    {a(n)=sum(k=0, n, binomial(n^2,(n-k)^2)*binomial(n^2,k^2))}
    for(n=1, 20, print1(a(n), ", "))

Formula

From Vaclav Kotesovec, Mar 03 2014: (Start)
Limit n->infinity a(n)^(1/n^2) = 16/(3*sqrt(3)).
a(n) ~ c * 2^(4*n^2+3) / (Pi * n^2 * 3^(3*n^2/2+1)), where c = JacobiTheta3(0,9*exp(-16/3)) = EllipticTheta[3, 0, 9*Exp[-16/3]] = 1.08691022925895131... if n is even, and c = JacobiTheta2(0,9*exp(-16/3)) = EllipticTheta[2, 0, 9*Exp[-16/3]] = 0.91485129628884995... if n is odd.
(End)

A066382 a(n) = Sum_{k=0..n} binomial(n^2,k).

Original entry on oeis.org

1, 2, 11, 130, 2517, 68406, 2391496, 102022810, 5130659561, 296881218694, 19415908147836, 1415538531617772, 113796709835547767, 9998149029974754104, 952980844872975079232, 97930011125976327934826, 10791878598088498089377489, 1269466214540655412954317894
Offset: 0

Views

Author

N. J. A. Sloane, Dec 23 2001

Keywords

Crossrefs

Cf. A206849.

Programs

  • Magma
    [&+[Binomial(n^2, k): k in [0..n]]: n in [0..20]]; // Vincenzo Librandi, Jun 08 2019
  • Mathematica
    Table[Sum[Binomial[n^2, k], {k, 0, n}], {n, 0, 20}] (* Vincenzo Librandi, Jun 08 2019 *)
  • PARI
    { for (n=0, 100, a=0; for (k=0, n, a+=binomial(n^2, k)); write("b066382.txt", n, " ", a) ) } \\ Harry J. Smith, Feb 12 2010
    
  • PARI
    a(n) = sum(k=0, n, binomial(n^2,k)); \\ Michel Marcus, Jun 08 2019
    

Formula

a(n) = 2^(n^2) - binomial(n^2, n+1)*hypergeom([1, -n^2+n+1], [2+n], -1). - Vladeta Jovovic, Jul 08 2003
a(n) ~ exp(n - 1/2) * n^(n - 1/2) / sqrt(2*Pi). - Vaclav Kotesovec, Jun 07 2019

A238696 a(n) = Sum_{k=0..floor(n/2)} binomial(n*(n-k), n*k).

Original entry on oeis.org

1, 1, 2, 21, 497, 18508, 3297933, 2348121769, 2319121509374, 4535739243360613, 58887253765506968848, 1694438232474931034462251, 64598311562133275526222276162, 8312693334404799592869803398802772, 5827069387752679429926992257426553147833
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 03 2014

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n*(n-k), n*k], {k, 0, Floor[n/2]}], {n, 0, 20}]
  • PARI
    a(n)=sum(k=0,n\2, binomial(n*(n-k), n*k)) \\ Charles R Greathouse IV, Jul 29 2016

Formula

Maximum is at k = n*(1-1/sqrt(5))/2 = 0.2763932... * n.
Limit n->infinity a(n)^(1/n^2) = (1+sqrt(5))/2.
Lim sup n->infinity a(n) / (5^(1/4)/(n*sqrt(2*Pi))*((1+sqrt(5))/2)^(n^2+1)) = JacobiTheta3(0,exp(-5*sqrt(5)/2)) = EllipticTheta[3,0,Exp[-5*Sqrt[5]/2]] = 1.007468786736926147579...
Lim inf n->infinity a(n) / (5^(1/4)/(n*sqrt(2*Pi))*((1+sqrt(5))/2)^(n^2+1)) = JacobiTheta2(0,exp(-5*sqrt(5)/2)) = EllipticTheta[2,0,Exp[-5*Sqrt[5]/2]] = 0.494414344263155315970...
a(n) = [x^(n^2)] (1-x)^(n-1)/((1-x)^n - x^(2*n)) for n > 0. - Seiichi Manyama, Oct 11 2021

A306206 a(n) = Sum_{k=0..n} (n^2)!/((n^2-n*k)!*n!^k).

Original entry on oeis.org

1, 2, 13, 3445, 127028721, 1249195963773451, 5343245431687763366112193, 14729376926426500067331714992293420777, 36332859343341728199556523379140726537646663631786369
Offset: 0

Views

Author

Seiichi Manyama, Jan 29 2019

Keywords

Crossrefs

Programs

  • PARI
    {a(n) = sum(k=0, n, (n^2)!/((n^2-n*k)!*n!^k))}

Formula

From Vaclav Kotesovec, Jan 29 2019: (Start)
a(n) ~ 2 * (n^2)! / (n!)^n.
a(n) ~ n^(n^2 - n/2 + 1) / (exp(1/12) * 2^((n-3)/2) * Pi^((n-1)/2)). (End)

A306207 a(n) = Sum_{k=0..n} (n^2)!/((n^2-n*k)!*k!^n).

Original entry on oeis.org

1, 2, 19, 9745, 768211081, 17406784944114721, 179762725526880242306609281, 1230064011299573560897489169488350806401, 7660929590740297929124296619236388608530015362840364161
Offset: 0

Views

Author

Seiichi Manyama, Jan 29 2019

Keywords

Crossrefs

Programs

  • PARI
    {a(n) = sum(k=0, n, (n^2)!/((n^2-n*k)!*k!^n))}

Formula

From Vaclav Kotesovec, Jan 29 2019: (Start)
a(n) ~ (n^2)! / (n! * ((n-1)!)^n).
a(n) ~ exp(n - 1/12) * n^(n^2 - n/2 + 1/2) / (2*Pi)^(n/2). (End)
Showing 1-10 of 11 results. Next