cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A000522 Total number of ordered k-tuples (k=0..n) of distinct elements from an n-element set: a(n) = Sum_{k=0..n} n!/k!.

Original entry on oeis.org

1, 2, 5, 16, 65, 326, 1957, 13700, 109601, 986410, 9864101, 108505112, 1302061345, 16926797486, 236975164805, 3554627472076, 56874039553217, 966858672404690, 17403456103284421, 330665665962404000, 6613313319248080001, 138879579704209680022, 3055350753492612960485, 70273067330330098091156
Offset: 0

Views

Author

Keywords

Comments

Total number of permutations of all subsets of an n-set.
Also the number of one-to-one sequences that can be formed from n distinct objects.
Old name "Total number of permutations of a set with n elements", or the same with the word "arrangements", both sound too much like A000142.
Related to number of operations of addition and multiplication to evaluate a determinant of order n by cofactor expansion - see A026243.
a(n) is also the number of paths (without loops) in the complete graph on n+2 vertices starting at one vertex v1 and ending at another v2. Example: when n=2 there are 5 paths in the complete graph with 4 vertices starting at the vertex 1 and ending at the vertex 2: (12),(132),(142),(1342),(1432) so a(2) = 5. - Avi Peretz (njk(AT)netvision.net.il), Feb 23 2001; comment corrected by Jonathan Coxhead, Mar 21 2003
Also row sums of Table A008279, which can be generated by taking the derivatives of x^k. For example, for y = 1*x^3, y' = 3x^2, y" = 6x, y'''= 6 so a(4) = 1 + 3 + 6 + 6 = 16. - Alford Arnold, Dec 15 1999
a(n) is the permanent of the n X n matrix with 2s on the diagonal and 1s elsewhere. - Yuval Dekel, Nov 01 2003
(A000166 + this_sequence)/2 = A009179, (A000166 - this_sequence)/2 = A009628.
Stirling transform of A006252(n-1) = [1,1,1,2,4,14,38,...] is a(n-1) = [1,2,5,16,65,...]. - Michael Somos, Mar 04 2004
Number of {12,12*,21*}- and {12,12*,2*1}-avoiding signed permutations in the hyperoctahedral group.
a(n) = b such that Integral_{x=0..1} x^n*exp(-x) dx = a-b*exp(-1). - Sébastien Dumortier, Mar 05 2005
a(n) is the number of permutations on [n+1] whose left-to-right record lows all occur at the start. Example: a(2) counts all permutations on [3] except 231 (the last entry is a record low but its predecessor is not). - David Callan, Jul 20 2005
a(n) is the number of permutations on [n+1] that avoid the (scattered) pattern 1-2-3|. The vertical bar means the "3" must occur at the end of the permutation. For example, 21354 is not counted by a(4): 234 is an offending subpermutation. - David Callan, Nov 02 2005
Number of deco polyominoes of height n+1 having no reentrant corners along the lower contour (i.e., no vertical step that is followed by a horizontal step). In other words, a(n)=A121579(n+1,0). A deco polyomino is a directed column-convex polyomino in which the height, measured along the diagonal, is attained only in the last column. Example: a(1)=2 because the only deco polyominoes of height 2 are the vertical and horizontal dominoes, having no reentrant corners along their lower contours. - Emeric Deutsch, Aug 16 2006
Unreduced numerators of partial sums of the Taylor series for e. - Jonathan Sondow, Aug 18 2006
a(n) is the number of permutations on [n+1] (written in one-line notation) for which the subsequence beginning at 1 is increasing. Example: a(2)=5 counts 123, 213, 231, 312, 321. - David Callan, Oct 06 2006
a(n) is the number of permutations (written in one-line notation) on the set [n + k], k >= 1, for which the subsequence beginning at 1,2,...,k is increasing. Example: n = 2, k = 2. a(2) = 5 counts 1234, 3124, 3412, 4123, 4312. - Peter Bala, Jul 29 2014
a(n) and (1,-2,3,-4,5,-6,7,...) form a reciprocal pair under the list partition transform and associated operations described in A133314. - Tom Copeland, Nov 01 2007
Consider the subsets of the set {1,2,3,...,n} formed by the first n integers. E.g., for n = 3 we have {}, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}. Let the variable sbst denote a subset. For each subset sbst we determine its number of parts, that is nprts(sbst). The sum over all possible subsets is written as Sum_{sbst=subsets}. Then a(n) = Sum_{sbst=subsets} nprts(sbst)!. E.g., for n = 3 we have 1!+1!+1!+1!+2!+2!+2!+3!=16. - Thomas Wieder, Jun 17 2006
Equals row sums of triangle A158359(unsigned). - Gary W. Adamson, Mar 17 2009
Equals eigensequence of triangle A158821. - Gary W. Adamson, Mar 30 2009
For positive n, equals 1/BarnesG(n+1) times the determinant of the n X n matrix whose (i,j)-coefficient is the (i+j)th Bell number. - John M. Campbell, Oct 03 2011
a(n) is the number of n X n binary matrices with i) at most one 1 in each row and column and ii) the subset of rows that contain a 1 must also be the columns that contain a 1. Cf. A002720 where restriction ii is removed. - Geoffrey Critzer, Dec 20 2011
Number of restricted growth strings (RGS) [d(1),d(2),...,d(n)] such that d(k) <= k and d(k) <= 1 + (number of nonzero digits in prefix). The positions of nonzero digits determine the subset, and their values (decreased by 1) are the (left) inversion table (a rising factorial number) for the permutation, see example. - Joerg Arndt, Dec 09 2012
Number of a restricted growth strings (RGS) [d(0), d(1), d(2), ..., d(n)] where d(k) >= 0 and d(k) <= 1 + chg([d(0), d(1), d(2), ..., d(k-1)]) and chg(.) gives the number of changes of its argument. Replacing the function chg(.) by a function asc(.) that counts the ascents in the prefix gives A022493 (ascent sequences). - Joerg Arndt, May 10 2013
The sequence t(n) = number of i <= n such that floor(e*i!) is a square is mentioned in the abstract of Luca & Shparlinski. The values are t(n) = 0 for 0 <= n <= 2 and t(n) = 1 for at least 3 <= n <= 300. - R. J. Mathar, Jan 16 2014
a(n) = p(n,1) = q(n,1), where p and q are polynomials defined at A248664 and A248669. - Clark Kimberling, Oct 11 2014
a(n) is the number of ways at most n people can queue up at a (slow) ticket counter when one or more of the people may choose not to queue up. Note that there are C(n,k) sets of k people who quene up and k! ways to queue up. Since k can run from 0 to n, a(n) = Sum_{k=0..n} n!/(n-k)! = Sum_{k=0..n} n!/k!. For example, if n=3 and the people are A(dam), B(eth), and C(arl), a(3)=16 since there are 16 possible lineups: ABC, ACB, BAC, BCA, CAB, CBA, AB, BA, AC, CA, BC, CB, A, B, C, and empty queue. - Dennis P. Walsh, Oct 02 2015
As the row sums of A008279, Motzkin uses the abbreviated notation $n_<^\Sigma$ for a(n).
The piecewise polynomial function f defined by f(x) = a(n)*x^n/n! on each interval [ 1-1/a(n), 1-1/a(n+1) ) is continuous on [0,1) and lim_{x->1} f(x) = e. - Luc Rousseau, Oct 15 2019
a(n) is composite for 3 <= n <= 2015, but a(2016) is prime (or at least a strong pseudoprime): see Johansson link. - Robert Israel, Jul 27 2020 [a(2016) is prime, ECPP certificate generated with CM 0.4.3 and checked by factordb. - Jason H Parker, Jun 15 2025]
In general, sequences of the form a(0)=a, a(n) = n*a(n-1) + k, n>0, will have a closed form of n!*a + floor(n!*(e-1))*k. - Gary Detlefs, Oct 26 2020
From Peter Bala, Apr 03 2022: (Start)
a(2*n) is odd and a(2*n+1) is even. More generally, a(n+k) == a(n) (mod k) for all n and k. It follows that for each positive integer k, the sequence obtained by reducing a(n) modulo k is periodic, with the exact period dividing k. Various divisibility properties of the sequence follow from this; for example, a(5*n+2) == a(5*n+4) == 0 (mod 5), a(25*n+7) == a(25*n+19) == 0 (mod 25) and a(13*n+4) == a(13*n+10)== a(13*n+12) == 0 (mod 13). (End)
Number of possible ranking options on a typical ranked choice voting ballot with n candidates (allowing undervotes). - P. Christopher Staecker, May 05 2024
From Thomas Scheuerle, Dec 28 2024: (Start)
Number of decorated permutations of size n.
Number of Le-diagrams with bounding box semiperimeter n, for n > 0.
By counting over all k = 1..n and n > 0, the number of positroid cells for the totally nonnegative real Grassmannian Gr(k, n), equivalently the number of Grassmann necklaces of type (k, n). (End)

Examples

			G.f. = 1 + 2*x + 5*x^2 + 16*x^3 + 65*x^4 + 326*x^5 + 1957*x^6 + 13700*x^7 + ...
With two objects we can form 5 sequences: (), (a), (b), (a,b), (b,a), so a(2) = 5.
From _Joerg Arndt_, Dec 09 2012: (Start)
The 16 arrangements of the 3-set and their RGS (dots denote zeros) are
  [ #]       RGS        perm. of subset
  [ 1]    [ . . . ]      [  ]
  [ 2]    [ . . 1 ]      [ 3 ]
  [ 3]    [ . 1 . ]      [ 2 ]
  [ 4]    [ . 1 1 ]      [ 2 3 ]
  [ 5]    [ . 1 2 ]      [ 3 2 ]
  [ 6]    [ 1 . . ]      [ 1 ]
  [ 7]    [ 1 . 1 ]      [ 1 3 ]
  [ 8]    [ 1 . 2 ]      [ 3 1 ]
  [ 9]    [ 1 1 . ]      [ 1 2 ]
  [10]    [ 1 1 1 ]      [ 1 2 3 ]
  [11]    [ 1 1 2 ]      [ 1 3 2 ]
  [12]    [ 1 1 3 ]      [ 2 3 1 ]
  [13]    [ 1 2 . ]      [ 2 1 ]
  [14]    [ 1 2 1 ]      [ 2 1 3 ]
  [15]    [ 1 2 2 ]      [ 3 1 2 ]
  [16]    [ 1 2 3 ]      [ 3 2 1 ]
(End)
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 75, Problem 9.
  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 65, p. 23, Ellipses, Paris 2008.
  • J. M. Gandhi, On logarithmic numbers, Math. Student, 31 (1963), 73-83.
  • R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section E11.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 16.
  • D. Singh, The numbers L(m,n) and their relations with prepared Bernoulli and Eulerian numbers, Math. Student, 20 (1952), 66-70.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Average of n-th row of triangle in A068424 [Corrected by N. J. A. Sloane, Feb 29 2024].
Row sums of A008279 and A094816.
First differences give A001339. Second differences give A001340.
Partial sums are in A001338, A002104.
A row of the array in A144502.
See also A370973, Nearest integer to e*n!.

Programs

  • Haskell
    import Data.List (subsequences, permutations)
    a000522 = length . choices . enumFromTo 1 where
    choices = concat . map permutations . subsequences
    -- Reinhard Zumkeller, Feb 21 2012, Oct 25 2010
    
  • Magma
    [1] cat [n eq 1 select (n+1) else n*Self(n-1)+1: n in [1..25]]; // Vincenzo Librandi, Feb 15 2015
    
  • Maple
    a(n):= exp(1)*int(x^n*exp(-x)*Heaviside(x-1), x=0..infinity); # Karol A. Penson, Oct 01 2001
    A000522 := n->add(n!/k!,k=0..n);
    G(x):=exp(x)/(1-x): f[0]:=G(x): for n from 1 to 26 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..20);
    # Zerinvary Lajos, Apr 03 2009
    G:=exp(z)/(1-z): Gser:=series(G,z=0,21):
    for n from 0 to 20 do a(n):=n!*coeff(Gser,z,n): end do
    # Paul Weisenhorn, May 30 2010
    k := 1; series(hypergeom([1,k],[],x/(1-x))/(1-x), x=0, 20); # Mark van Hoeij, Nov 07 2011
    # one more Maple program:
    a:= proc(n) option remember;
          `if`(n<0, 0, 1+n*a(n-1))
        end:
    seq(a(n), n=0..23);  # Alois P. Heinz, Sep 13 2019
    seq(simplify(KummerU(-n, -n, 1)), n = 0..23); # Peter Luschny, May 10 2022
  • Mathematica
    Table[FunctionExpand[Gamma[n + 1, 1]*E], {n, 0, 24}]
    nn = 20; Accumulate[Table[1/k!, {k, 0, nn}]] Range[0, nn]! (* Jan Mangaldan, Apr 21 2013 *)
    FoldList[#1*#2 + #2 &, 0, Range@ 23] + 1 (* or *)
    f[n_] := Floor[E*n!]; f[0] = 1; Array[f, 20, 0] (* Robert G. Wilson v, Feb 13 2015 *)
    RecurrenceTable[{a[n + 1] == (n + 1) a[n] + 1, a[0] == 1}, a, {n, 0, 12}] (* Emanuele Munarini, Apr 27 2017 *)
    nxt[{n_,a_}]:={n+1,a(n+1)+1}; NestList[nxt,{0,1},30][[All,2]] (* Harvey P. Dale, Jan 29 2023 *)
  • Maxima
    a(n) := if n=0 then 1 else n*a(n-1)+1; makelist(a(n),n,0,12); /* Emanuele Munarini, Apr 27 2017 */
  • PARI
    {a(n) = local(A); if( n<0, 0, A = vector(n+1); A[1]=1; for(k=1, n, A[k+1] = k*A[k] + 1); A[n+1])}; /* Michael Somos, Jul 01 2004 */
    
  • PARI
    {a(n) = if( n<0, 0, n! * polcoeff( exp( x +x * O(x^n)) / (1 - x), n))}; /* Michael Somos, Mar 06 2004 */
    
  • PARI
    a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=1/(1-x)^2+x^2*deriv(A)/(1-x)); polcoeff(A, n) \\ Paul D. Hanna, Sep 03 2008
    
  • PARI
    {a(n)=local(X=x+x*O(x^n));polcoeff(sum(m=0,n,(m+2)^m*x^m/(1+(m+1)*X)^(m+1)),n)} /* Paul D. Hanna */
    
  • PARI
    a(n)=sum(k=0,n,binomial(n,k)*k!); \\ Joerg Arndt, Dec 14 2014
    
  • Sage
    # program adapted from Alois P. Heinz's Maple code in A022493
    @CachedFunction
    def b(n, i, t):
        if n <= 1:
            return 1
        return sum(b(n - 1, j, t + (j == i)) for j in range(t + 2))
    def a(n):
        return b(n, 0, 0)
    v000522 = [a(n) for n in range(33)]
    print(v000522)
    # Joerg Arndt, May 11 2013
    

Formula

a(n) = n*a(n-1) + 1, a(0) = 1.
a(n) = A007526(n-1) + 1.
a(n) = A061354(n)*A093101(n).
a(n) = n! * Sum_{k=0..n} 1/k! = n! * (e - Sum_{k>=n+1} 1/k!). - Michael Somos, Mar 26 1999
a(0) = 1; for n > 0, a(n) = floor(e*n!).
E.g.f.: exp(x)/(1-x).
a(n) = 1 + Sum_{n>=k>=j>=0} (k-j+1)*k!/j! = a(n-1) + A001339(n-1) = A007526(n) + 1. Binomial transformation of n!, i.e., A000142. - Henry Bottomley, Jun 04 2001
a(n) = floor(2/(n+1))*A009578(n+1)-1. - Emeric Deutsch, Oct 24 2001
Integral representation as n-th moment of a nonnegative function on a positive half-axis: a(n) = e*Integral_{x>=0} x^n*e^(-x)*Heaviside(x-1) dx. - Karol A. Penson, Oct 01 2001
Formula, in Mathematica notation: Special values of Laguerre polynomials, a(n)=(-1)^n*n!*LaguerreL[n, -1-n, 1], n=1, 2, ... . This relation cannot be checked by Maple, as it appears that Maple does not incorporate Laguerre polynomials with second index equal to negative integers. It does check with Mathematica. - Karol A. Penson and Pawel Blasiak ( blasiak(AT)lptl.jussieu.fr), Feb 13 2004
G.f.: Sum_{k>=0} k!*x^k/(1-x)^(k+1). a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n, k)*k^(n-k)*(k+1)^k. - Vladeta Jovovic, Aug 18 2002
a(n) = Sum_{k=0..n} A008290(n, k)*2^k. - Philippe Deléham, Dec 12 2003
a(n) = Sum_{k=0..n} A046716(n, k). - Philippe Deléham, Jun 12 2004
a(n) = e*Gamma(n+1,1) where Gamma(z,t) = Integral_{x>=t} e^(-x)*x^(z-1) dx is incomplete gamma function. - Michael Somos, Jul 01 2004
a(n) = Sum_{k=0..n} P(n, k). - Ross La Haye, Aug 28 2005
Given g.f. A(x), then g.f. A059115 = A(x/(1-x)). - Michael Somos, Aug 03 2006
a(n) = 1 + n + n*(n-1) + n*(n-1)*(n-2) + ... + n!. - Jonathan Sondow, Aug 18 2006
a(n) = Sum_{k=0..n} binomial(n,k) * k!; interpretation: for all k-subsets (sum), choose a subset (binomial(n,k)), and permutation of subset (k!). - Joerg Arndt, Dec 09 2012
a(n) = Integral_{x>=0} (x+1)^n*e^(-x) dx. - Gerald McGarvey, Oct 19 2006
a(n) = Sum_{k=0..n} A094816(n, k), n>=0 (row sums of Poisson-Charlier coefficient matrix). - N. J. A. Sloane, Nov 10 2007
From Tom Copeland, Nov 01 2007, Dec 10 2007: (Start)
Act on 1/(1-x) with 1/(1-xDx) = Sum_{j>=0} (xDx)^j = Sum_{j>=0} x^j*D^j*x^j = Sum_{j>=0} j!*x^j*L(j,-:xD:,0) where Lag(n,x,0) are the Laguerre polynomials of order 0, D the derivative w.r.t. x and (:xD:)^j = x^j*D^j. Truncating the operator series at the j = n term gives an o.g.f. for a(0) through a(n) consistent with Jovovic's.
These results and those of Penson and Blasiak, Arnold, Bottomley and Deleham are related by the operator A094587 (the reverse of A008279), which is the umbral equivalent of n!*Lag[n,(.)!*Lag[.,x,-1],0] = (1-D)^(-1) x^n = (-1)^n * n! Lag(n,x,-1-n) = Sum_{j=0..n} binomial(n,j)*j!*x^(n-j) = Sum_{j=0..n} (n!/j!)*x^j. Umbral substitution of b(.) for x and then letting b(n)=1 for all n connects the results. See A132013 (the inverse of A094587) for a connection between these operations and 1/(1-xDx).
(End)
From Peter Bala, Jul 15 2008: (Start)
a(n) = n!*e - 1/(n + 1/(n+1 + 2/(n+2 + 3/(n+3 + ...)))).
Asymptotic result (Ramanujan): n!*e - a(n) ~ 1/n - 1/n^3 + 1/n^4 + 2/n^5 - 9/n^6 + ..., where the sequence [1,0,-1,1,2,-9,...] = [(-1)^k*A000587(k)], for k>=1.
a(n) is a difference divisibility sequence, that is, the difference a(n) - a(m) is divisible by n - m for all n and m (provided n is not equal to m). For fixed k, define the derived sequence a_k(n) = (a(n+k)-a(k))/n, n = 1,2,3,... . Then a_k(n) is also a difference divisibility sequence.
For example, the derived sequence a_0(n) is just a(n-1). The set of integer sequences satisfying the difference divisibility property forms a ring with term-wise operations of addition and multiplication.
Recurrence relations: a(0) = 1, a(n) = (n-1)*(a(n-1) + a(n-2)) + 2, for n >= 1. a(0) = 1, a(1) = 2, D-finite with recurrence: a(n) = (n+1)*a(n-1) - (n-1)*a(n-2) for n >= 2. The sequence b(n) := n! satisfies the latter recurrence with the initial conditions b(0) = 1, b(1) = 1. This leads to the finite continued fraction expansion a(n)/n! = 1/(1-1/(2-1/(3-2/(4-...-(n-1)/(n+1))))), n >= 2.
Limit_{n->oo} a(n)/n! = e = 1/(1-1/(2-1/(3-2/(4-...-n/((n+2)-...))))). This is the particular case m = 0 of the general result m!/e - d_m = (-1)^(m+1) *(1/(m+2 -1/(m+3 -2/(m+4 -3/(m+5 -...))))), where d_m denotes the m-th derangement number A000166(m).
For sequences satisfying the more general recurrence a(n) = (n+1+r)*a(n-1) - (n-1)*a(n-2), which yield series acceleration formulas for e/r! that involve the Poisson-Charlier polynomials c_r(-n;-1), refer to A001339 (r=1), A082030 (r=2), A095000 (r=3) and A095177 (r=4).
For the corresponding results for the constants log(2), zeta(2) and zeta(3) refer to A142992, A108625 and A143007 respectively.
(End)
G.f. satisfies: A(x) = 1/(1-x)^2 + x^2*A'(x)/(1-x). - Paul D. Hanna, Sep 03 2008
From Paul Barry, Nov 27 2009: (Start)
G.f.: 1/(1-2*x-x^2/(1-4*x-4*x^2/(1-6*x-9*x^2/(1-8*x-16*x^2/(1-10*x-25*x^2/(1-... (continued fraction);
G.f.: 1/(1-x-x/(1-x/(1-x-2*x/(1-2*x/(1-x-3*x/(1-3*x/(1-x-4*x/(1-4*x/(1-x-5*x/(1-5*x/(1-... (continued fraction).
(End)
O.g.f.: Sum_{n>=0} (n+2)^n*x^n/(1 + (n+1)*x)^(n+1). - Paul D. Hanna, Sep 19 2011
G.f. hypergeom([1,k],[],x/(1-x))/(1-x), for k=1,2,...,9 is the generating function for A000522, A001339, A082030, A095000, A095177, A096307, A096341, A095722, and A095740. - Mark van Hoeij, Nov 07 2011
G.f.: 1/U(0) where U(k) = 1 - x - x*(k+1)/(1 - x*(k+1)/U(k+1)); (continued fraction). - Sergei N. Gladkovskii, Oct 14 2012
E.g.f.: 1/U(0) where U(k) = 1 - x/(1 - 1/(1 + (k+1)/U(k+1))); (continued fraction). - Sergei N. Gladkovskii, Nov 16 2012
G.f.: 1/(1-x)/Q(0), where Q(k) = 1 - x/(1-x)*(k+1)/(1 - x/(1-x)*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, May 19 2013
G.f.: 2/(1-x)/G(0), where G(k) = 1 + 1/(1 - x*(2*k+2)/(x*(2*k+3) - 1 + x*(2*k+2)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 31 2013
G.f.: (B(x)+ 1)/(2-2*x) = Q(0)/(2-2*x), where B(x) be g.f. A006183, Q(k) = 1 + 1/(1 - x*(k+1)/(x*(k+1) + (1-x)/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 08 2013
G.f.: 1/Q(0), where Q(k) = 1 - 2*x*(k+1) - x^2*(k+1)^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Sep 30 2013
E.g.f.: e^x/(1-x) = (1 - 12*x/(Q(0) + 6*x - 3*x^2))/(1-x), where Q(k) = 2*(4*k+1)*(32*k^2 + 16*k + x^2 - 6) - x^4*(4*k-1)*(4*k+7)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Nov 18 2013
G.f.: conjecture: T(0)/(1-2*x), where T(k) = 1 - x^2*(k+1)^2/(x^2*(k+1)^2 - (1 - 2*x*(k+1))*(1 - 2*x*(k+2))/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 18 2013
0 = a(n)*(+a(n+1) - 3*a(n+2) + a(n+3)) + a(n+1)*(+a(n+1) - a(n+3)) + a(n+2)*(+a(n+2)) for all n>=0. - Michael Somos, Jul 04 2014
From Peter Bala, Jul 29 2014: (Start)
a(n) = F(n), where the function F(x) := Integral_{0..infinity} e^(-u)*(1 + u)^x du smoothly interpolates this sequence to all real values of x. Note that F(-1) = G and for n = 2,3,... we have F(-n) = (-1)^n/(n-1)! *( A058006(n-2) - G ), where G = 0.5963473623... denotes Gompertz's constant - see A073003.
a(n) = n!*e - e*( Sum_{k >= 0} (-1)^k/((n + k + 1)*k!) ).
(End)
a(n) = hypergeometric_U(1, n+2, 1). - Peter Luschny, Nov 26 2014
a(n) ~ exp(1-n)*n^(n-1/2)*sqrt(2*Pi). - Vladimir Reshetnikov, Oct 27 2015
a(n) = A038155(n+2)/A000217(n+1). - Anton Zakharov, Sep 08 2016
a(n) = round(exp(1)*n!), n > 1 - Simon Plouffe, Jul 28 2020
a(n) = KummerU(-n, -n, 1). - Peter Luschny, May 10 2022
a(n) = (e/(2*Pi))*Integral_{x=-oo..oo} (n+1+i*x)!/(1+i*x) dx. - David Ulgenes, Apr 18 2023
Sum_{i=0..n} (-1)^(n-i) * binomial(n, i) * a(i) = n!. - Werner Schulte, Apr 03 2024

Extensions

Additional comments from Michael Somos

A002024 k appears k times; a(n) = floor(sqrt(2n) + 1/2).

Original entry on oeis.org

1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13
Offset: 1

Views

Author

Keywords

Comments

Integer inverse function of the triangular numbers A000217. The function trinv(n) = floor((1+sqrt(1+8n))/2), n >= 0, gives the values 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, ..., that is, the same sequence with offset 0. - N. J. A. Sloane, Jun 21 2009
Array T(k,n) = n+k-1 read by antidiagonals.
Eigensequence of the triangle = A001563. - Gary W. Adamson, Dec 29 2008
Can apparently also be defined via a(n+1)=b(n) for n >= 2 where b(0)=b(1)=1 and b(n) = b(n-b(n-2))+1. Tested to be correct for all n <= 150000. - José María Grau Ribas, Jun 10 2011
For any n >= 0, a(n+1) is the least integer m such that A000217(m)=m(m+1)/2 is larger than n. This is useful when enumerating representations of n as difference of triangular numbers; see also A234813. - M. F. Hasler, Apr 19 2014
Number of binary digits of A023758, i.e., a(n) = ceiling(log_2(A023758(n+2))). - Andres Cicuttin, Apr 29 2016
a(n) and A002260(n) give respectively the x(n) and y(n) coordinates of the sorted sequence of points in the integer lattice such that x(n) > 0, 0 < y(n) <= x(n), and min(x(n), y(n)) < max(x(n+1), y(n+1)) for n > 0. - Andres Cicuttin, Dec 25 2016
Partial sums (A060432) are given by S(n) = (-a(n)^3 + a(n)*(1+6n))/6. - Daniel Cieslinski, Oct 23 2017
As an array, T(k,n) is the number of digits columns used in carryless multiplication between a k-digit number and an n-digit number. - Stefano Spezia, Sep 24 2022
a(n) is the maximum number of possible solutions to an n-statement Knights and Knaves Puzzle, where each statement is of the form "x of us are knights" for some 1 <= x <= n, knights can only tell the truth and knaves can only lie. - Taisha Charles and Brittany Ohlinger, Jul 29 2023

Examples

			From _Clark Kimberling_, Sep 16 2008: (Start)
As a rectangular array, a northwest corner:
  1 2 3 4 5 6
  2 3 4 5 6 7
  3 4 5 6 7 8
  4 5 6 7 8 9
This is the weight array (cf. A144112) of A107985 (formatted as a rectangular array). (End)
G.f. = x + 2*x^2 + 2*x^3 + 3*x^4 + 3*x^5 + 3*x^6 + 4*x^7 + 4*x^9 + 4*x^9 + 4*x^10 + ...
		

References

  • Edward S. Barbeau, Murray S. Klamkin, and William O. J. Moser, Five Hundred Mathematical Challenges, Prob. 441, pp. 41, 194. MAA 1995.
  • R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 97.
  • K. Hardy and K. S. Williams, The Green Book of Mathematical Problems, p. 59, Solution to Prob. 14, Dover NY, 1985
  • R. Honsberger, Mathematical Morsels, pp. 133-134, MAA 1978.
  • J. F. Hurley, Litton's Problematical Recreations, pp. 152; 313-4 Prob. 22, VNR Co., NY, 1971.
  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 1, p. 43.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 129.

Crossrefs

a(n+1) = 1+A003056(n), A022846(n)=a(n^2), a(n+1)=A002260(n)+A025581(n).
A123578 is an essentially identical sequence.

Programs

  • Haskell
    a002024 n k = a002024_tabl !! (n-1) !! (k-1)
    a002024_row n = a002024_tabl !! (n-1)
    a002024_tabl = iterate (\xs@(x:_) -> map (+ 1) (x : xs)) [1]
    a002024_list = concat a002024_tabl
    a002024' = round . sqrt . (* 2) . fromIntegral
    -- Reinhard Zumkeller, Jul 05 2015, Feb 12 2012, Mar 18 2011
    
  • Haskell
    a002024_list = [1..] >>= \n -> replicate n n
    
  • Haskell
    a002024 = (!!) $ [1..] >>= \n -> replicate n n
    -- Sascha Mücke, May 10 2016
    
  • Magma
    [Floor(Sqrt(2*n) + 1/2): n in [1..80]]; // Vincenzo Librandi, Nov 19 2014
    
  • Maple
    A002024 := n-> ceil((sqrt(1+8*n)-1)/2); seq(A002024(n), n=1..100);
  • Mathematica
    a[1] = 1; a[n_] := a[n] = a[n - a[n - 1]] + 1 (* Branko Curgus, May 12 2009 *)
    Table[n, {n, 13}, {n}] // Flatten (* Robert G. Wilson v, May 11 2010 *)
    Table[PadRight[{},n,n],{n,15}]//Flatten (* Harvey P. Dale, Jan 13 2019 *)
  • PARI
    t1(n)=floor(1/2+sqrt(2*n)) /* A002024 = this sequence */
    
  • PARI
    t2(n)=n-binomial(floor(1/2+sqrt(2*n)),2) /* A002260(n-1) */
    
  • PARI
    t3(n)=binomial(floor(3/2+sqrt(2*n)),2)-n+1 /* A004736 */
    
  • PARI
    t4(n)=n-1-binomial(floor(1/2+sqrt(2*n)),2) /* A002260(n-1)-1 */
    
  • PARI
    A002024(n)=(sqrtint(n*8)+1)\2 \\ M. F. Hasler, Apr 19 2014
    
  • PARI
    a(n)=(sqrtint(8*n-7)+1)\2
    
  • PARI
    a(n)=my(k=1);while(binomial(k+1,2)+1<=n,k++);k \\ R. J. Cano, Mar 17 2014
    
  • Python
    from math import isqrt
    def A002024(n): return (isqrt(8*n)+1)//2 # Chai Wah Wu, Feb 02 2022
  • Sage
    [floor(sqrt(2*n) +1/2) for n in (1..80)] # G. C. Greubel, Dec 10 2018
    

Formula

a(n) = floor(1/2 + sqrt(2n)). Also a(n) = ceiling((sqrt(1+8n)-1)/2). [See the Liu link for a large collection of explicit formulas. - N. J. A. Sloane, Oct 30 2019]
a((k-1)*k/2 + i) = k for k > 0 and 0 < i <= k. - Reinhard Zumkeller, Aug 30 2001
a(n) = a(n - a(n-1)) + 1, with a(1)=1. - Ian M. Levitt (ilevitt(AT)duke.poly.edu), Aug 18 2002
a(n) = round(sqrt(2n)). - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Nov 01 2002
T(n,k) = A003602(A118413(n,k)); = T(n,k) = A001511(A118416(n,k)). - Reinhard Zumkeller, Apr 27 2006
G.f.: (x/(1-x))*Product_{k>0} (1-x^(2*k))/(1-x^(2*k-1)). - Vladeta Jovovic, Oct 06 2003
Equals A127899 * A004736. - Gary W. Adamson, Feb 09 2007
Sum_{i=1..n} Sum_{j=i..n+i-1} T(j,i) = A000578(n); Sum_{i=1..n} T(n,i) = A000290(n). - Reinhard Zumkeller, Jun 24 2007
a(n) + n = A014132(n). - Vincenzo Librandi, Jul 08 2010
a(n) = ceiling(-1/2 + sqrt(2n)). - Branko Curgus, May 12 2009
a(A169581(n)) = A038567(n). - Reinhard Zumkeller, Dec 02 2009
a(n) = round(sqrt(2*n)) = round(sqrt(2*n-1)); there exist a and b greater than zero such that 2*n = 2+(a+b)^2 -(a+3*b) and a(n)=(a+b-1). - Fabio Civolani (civox(AT)tiscali.it), Feb 23 2010
A005318(n+1) = 2*A005318(n) - A205744(n), A205744(n) = A005318(A083920(n)), A083920(n) = n - a(n). - N. J. A. Sloane, Feb 11 2012
Expansion of psi(x) * x / (1 - x) in powers of x where psi() is a Ramanujan theta function. - Michael Somos, Mar 19 2014
G.f.: (x/(1-x)) * Product_{n>=1} (1 + x^n) * (1 - x^(2*n)). - Paul D. Hanna, Feb 27 2016
a(n) = 1 + Sum_{i=1..n/2} ceiling(floor(2(n-1)/(i^2+i))/(2n)). - José de Jesús Camacho Medina, Jan 07 2017
a(n) = floor((sqrt(8*n-7)+1)/2). - Néstor Jofré, Apr 24 2017
a(n) = floor((A000196(8*n)+1)/2). - Pontus von Brömssen, Dec 10 2018
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/4 (A003881). - Amiram Eldar, Oct 01 2022
G.f. as array: (x^2*(1 - y)^2 + y^2 + x*y*(1 - 2*y))/((1 - x)^2*(1 - y)^2). - Stefano Spezia, Apr 22 2024

A000037 Numbers that are not squares (or, the nonsquares).

Original entry on oeis.org

2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99
Offset: 1

Views

Author

Keywords

Comments

Note the remarkable formula for the n-th term (see the FORMULA section)!
These are the natural numbers with an even number of divisors. The number of divisors is odd for the complementary sequence, the squares (sequence A000290) and the numbers for which the number of divisors is divisible by 3 is sequence A059269. - Ola Veshta (olaveshta(AT)my-deja.com), Apr 04 2001
a(n) is the largest integer m not equal to n such that n = (floor(n^2/m) + m)/2. - Alexander R. Povolotsky, Feb 10 2008
Union of A007969 and A007970; A007968(a(n)) > 0. - Reinhard Zumkeller, Jun 18 2011
Terms of even numbered rows in the triangle A199332. - Reinhard Zumkeller, Nov 23 2011
If a(n) and a(n+1) are of the same parity then (a(n)+a(n+1))/2 is a square. - Zak Seidov, Aug 13 2012
Theaetetus of Athens proved the irrationality of the square roots of these numbers in the 4th century BC. - Charles R Greathouse IV, Apr 18 2013
4*a(n) are the even members of A079896, the discriminants of indefinite binary quadratic forms. - Wolfdieter Lang, Jun 14 2013

Examples

			For example note that the squares 0, 1, 4, 9, 16 are not included.
		

References

  • Titu Andreescu, Dorin Andrica, and Zuming Feng, 104 Number Theory Problems, Birkhäuser, 2006, 58-60.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A242401 (subsequence).
Cf. A086849 (partial sums), A048395.

Programs

  • Haskell
    a000037 n = n + a000196 (n + a000196 n)
    -- Reinhard Zumkeller, Nov 23 2011
    
  • Magma
    [n : n in [1..1000] | not IsSquare(n) ];
    
  • Magma
    at:=0; for n in [1..10000] do if not IsSquare(n) then at:=at+1; print at, n; end if; end for;
    
  • Maple
    A000037 := n->n+floor(1/2+sqrt(n));
  • Mathematica
    a[n_] := (n + Floor[Sqrt[n + Floor[Sqrt[n]]]]); Table[a[n], {n, 71}] (* Robert G. Wilson v, Sep 24 2004 *)
    With[{upto=100},Complement[Range[upto],Range[Floor[Sqrt[upto]]]^2]] (* Harvey P. Dale, Dec 02 2011 *)
    a[ n_] :=  If[ n < 0, 0, n + Round @ Sqrt @ n]; (* Michael Somos, May 28 2014 *)
  • Maxima
    A000037(n):=n + floor(1/2 + sqrt(n))$ makelist(A000037(n),n,1,50); /* Martin Ettl, Nov 15 2012 */
    
  • PARI
    {a(n) = if( n<0, 0, n + (1 + sqrtint(4*n)) \ 2)};
    
  • Python
    from math import isqrt
    def A000037(n): return n+isqrt(n+isqrt(n)) # Chai Wah Wu, Mar 31 2022
    
  • Python
    from math import isqrt
    def A000037(n): return n+(k:=isqrt(n))+int(n>=k*(k+1)+1) # Chai Wah Wu, Jun 17 2024

Formula

a(n) = n + floor(1/2 + sqrt(n)).
a(n) = n + floor(sqrt( n + floor(sqrt n))).
A010052(a(n)) = 0. - Reinhard Zumkeller, Jan 26 2010
A173517(a(n)) = n; a(n)^2 = A030140(n). - Reinhard Zumkeller, Feb 20 2010
a(n) = A000194(n) + n. - Jaroslav Krizek, Jun 14 2009
a(A002061(n)) = a(n^2-n+1) = A002522(n) = n^2 + 1. - Jaroslav Krizek, Jun 21 2009

Extensions

Edited by Charles R Greathouse IV, Oct 30 2009

A003149 a(n) = Sum_{k=0..n} k!*(n - k)!.

Original entry on oeis.org

1, 2, 5, 16, 64, 312, 1812, 12288, 95616, 840960, 8254080, 89441280, 1060369920, 13649610240, 189550368000, 2824077312000, 44927447040000, 760034451456000, 13622700994560000, 257872110354432000, 5140559166898176000, 107637093007589376000, 2361827297364885504000
Offset: 0

Views

Author

Keywords

Comments

From Michael Somos, Feb 14 2002: (Start)
The sequence is the resistance between opposite corners of an (n+1)-dimensional hypercube of unit resistors, multiplied by (n+1)!.
The resistances for n+1 = 1,2,3,... are 1, 1, 5/6, 2/3, 8/15, 13/30, 151/420, 32/105, 83/315, 73/315, 1433/6930, ... (see A046878/A046879). (End)
Number of {12,21*,2*1}-avoiding signed permutations in the hyperoctahedral group.
a(n) is the sum of the reciprocals of the binomial coefficients C(n,k), multiplied by n!; example: a(4) = 4!*(1/1 + 1/4 + 1/6 + 1/4 + 1/1) = 64. - Philippe Deléham, May 12 2005
a(n) is the number of permutations on [n+1] that avoid the pattern 13-2|. The absence of a dash between 1 and 3 means the "1" and "3" must be consecutive in the permutation; the vertical bar means the "2" must occur at the end of the permutation. For example, 24153 fails to avoid this pattern: 243 is an offending subpermutation. - David Callan, Nov 02 2005
n!/a(n) is the probability that a random walk on an (n+1)-dimensional hypercube will visit the diagonally opposite vertex before it returns to its starting point. 2^n*a(n)/n! is the expected length of a random walk from one vertex of an (n+1)-dimensional hypercube to the diagonally opposite vertex (a walk which may include one or more passes through the starting point). These "random walk" examples are solutions to IBM's "Ponder This" puzzle for April, 2006. - Graeme McRae, Apr 02 2006
a(n) is the number of strong fixed points in all permutations of {1,2,...,n+1} (a permutation p of {1,2,...,n} is said to have j as a strong fixed point (splitter) if p(k)j for k>j). Example: a(2)=5 because the permutations of {1,2,3}, with marked strong fixed points, are: 1'2'3', 1'32, 312, 213', 231 and 321. - Emeric Deutsch, Oct 28 2008
Coefficients in the asymptotic expansion of exp(-2*x)*Ei(x)^2 for x -> inf, where Ei(x) is the exponential integral. - Vladimir Reshetnikov, Apr 24 2016

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983, (1.1.11 b, p.342).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Volume 1 (1986), p. 49. [From Emeric Deutsch, Oct 28 2008]

Crossrefs

Cf. A052186, A006932, A145878. - Emeric Deutsch, Oct 28 2008
Cf. A324495, A324496, A324497 (problem similar to the random walks on the hypercube).

Programs

  • GAP
    F:=Factorial;; List([0..20], n-> Sum([0..n], k-> F(k)*F(n-k)) ); # G. C. Greubel, Dec 29 2019
    
  • Magma
    F:=Factorial; [ (&+[F(k)*F(n-k): k in [0..n]]): n in [0..20]]; // G. C. Greubel, Dec 29 2019
    
  • Maple
    seq( add(k!*(n-k)!, k=0..n), n=0..20); # G. C. Greubel, Dec 29 2019
    # second Maple program:
    a:= proc(n) option remember; `if`(n<2, n+1,
          ((3*n+1)*a(n-1)-n^2*a(n-2))/2)
        end:
    seq(a(n), n=0..22);  # Alois P. Heinz, Aug 08 2025
  • Mathematica
    Table[Sum[k!(n-k)!,{k,0,n}],{n,0,20}] (* Harvey P. Dale, Mar 28 2012 *)
    Table[(n+1)!/2^n*Sum[2^k/(k+1),{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 27 2012 *)
    Round@Table[-2 (n+1)! Re[LerchPhi[2, 1, n+2]], {n, 0, 20}] (* Vladimir Reshetnikov, Nov 12 2015 *)
    Table[(n+1)!*Sum[Binomial[n+1, 2*j+1]/(2*j+1), {j, 0, n}]/2^n, {n, 0, 20}] (* Vaclav Kotesovec, Dec 04 2015 *)
    Series[Exp[-2x] ExpIntegralEi[x]^2, {x, Infinity, 20}][[3]] (* Vladimir Reshetnikov, Apr 24 2016 *)
    Table[2*(-1)^n * Sum[(2^k - 1) * StirlingS1[n, k] * BernoulliB[k], {k, 0, n}], {n, 1, 25}] (* Vaclav Kotesovec, Oct 04 2022 *)
  • PARI
    a(n)=sum(k=0,n,k!*(n-k)!)
    
  • PARI
    a(n)=if(n<0,0,(n+1)!*polcoeff(log(1-x+x^2*O(x^n))/(x/2-1),n+1))
    
  • PARI
    a(n) = my(A = 1, B = 1); for(k=1, n, B *= k; A = (n-k+1)*A + B); A \\ Mikhail Kurkov, Aug 08 2025
    
  • Python
    def a(n: int) -> int:
        if n < 2: return n + 1
        app, ap = 1, 2
        for i in range(2, n + 1):
            app, ap = ap, ((3 * i + 1) * ap - (i * i) * app) >> 1
        return ap
    print([a(n) for n in range(23)])  # Peter Luschny, Aug 08 2025
  • Sage
    f=factorial; [sum(f(k)*f(n-k) for k in (0..n)) for n in (0..20)] # G. C. Greubel, Dec 29 2019
    

Formula

a(n) = n! + ((n+1)/2)*a(n-1), n >= 1. - Leroy Quet, Sep 06 2002
a(n) = ((3n+1)*a(n-1) - n^2*a(n-2))/2, n >= 2. - David W. Wilson, Sep 06 2002; corrected by N. Sato, Jan 27 2010
G.f.: (Sum_{k>=0} k!*x^k)^2. - Vladeta Jovovic, Aug 30 2002
E.g.f: log(1-x)/(x/2 - 1) if offset 1.
Convolution of A000142 [factorial numbers] with itself. - Ross La Haye, Oct 29 2004
a(n) = Sum_{k=0..n+1} k*A145878(n+1,k). - Emeric Deutsch, Oct 28 2008
a(n) = A084938(n+2,2). - Philippe Deléham, Dec 17 2008
a(n) = 2*Integral_{t=0..oo} Ei(t)*exp(-2*t)*t^(n+1) where Ei is the exponential integral function. - Groux Roland, Dec 09 2010
Empirical: a(n-1) = 2^(-n)*(A103213(n) + n!*H(n)) with H(n) harmonic number of order n. - Groux Roland, Dec 18 2010; offset fixed by Vladimir Reshetnikov, Apr 24 2016
O.g.f.: 1/(1-I(x))^2 where I(x) is o.g.f. for A003319. - Geoffrey Critzer, Apr 27 2012
a(n) ~ 2*n!. - Vaclav Kotesovec, Oct 04 2012
a(n) = (n+1)!/2^n * Sum_{k=0..n} 2^k/(k+1). - Vaclav Kotesovec, Oct 27 2012
E.g.f.: 2/((x-1)*(x-2)) + 2*x/(x-2)^2*G(0) where G(k) = 1 + x*(2*k+1)/(2*(k+1) - 4*x*(k+1)^2/(2*x*(k+1) + (2*k+3)/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Dec 14 2012
a(n) = 2 * n! * (1 + Sum_{k>=1} A005649(k-1)/n^k). - Vaclav Kotesovec, Aug 01 2015
From Vladimir Reshetnikov, Nov 12 2015: (Start)
a(n) = -(n+1)!*Re(Beta(2; n+2, 0))/2^(n+1), where Beta(z; a, b) is the incomplete Beta function.
a(n) = -2*(n+1)!*Re(LerchPhi(2, 1, n+2)), where LerchPhi(z, s, a) is the Lerch transcendent. (End)
a(n) = (n+1)!*(H(n+1) + (n+1)*hypergeom([1, 1, -n], [2, 2], -1))/2^(n+1), where H(n) is the harmonic number. - Vladimir Reshetnikov, Apr 24 2016
Expansion of square of continued fraction 1/(1 - x/(1 - x/(1 - 2*x/(1 - 2*x/(1 - 3*x/(1 - 3*x/(1 - ...))))))). - Ilya Gutkovskiy, Apr 19 2017
a(n) = Sum_{k=0..n+1} (-1)^(n-k)*A226158(k)*Stirling1(n+1, k). - Mélika Tebni, Feb 22 2022
E.g.f.: x/((1-x)*(2-x))-(2*log(1-x))/(2-x)^2+1/(1-x). - Vladimir Kruchinin, Dec 17 2022

Extensions

More terms from Michel ten Voorde, Apr 11 2001

A003101 a(n) = Sum_{k = 1..n} (n - k + 1)^k.

Original entry on oeis.org

0, 1, 3, 8, 22, 65, 209, 732, 2780, 11377, 49863, 232768, 1151914, 6018785, 33087205, 190780212, 1150653920, 7241710929, 47454745803, 323154696184, 2282779990494, 16700904488705, 126356632390297, 987303454928972, 7957133905608836, 66071772829247409
Offset: 0

Views

Author

Keywords

Comments

For n > 0: a(n) = sum of row n of triangles A051129 and A247358. - Reinhard Zumkeller, Sep 14 2014
a(n-1) is the number of set partitions of [n] into two or more blocks such that all absolute differences between least elements of consecutive blocks are 1. a(3) = 8: 134|2, 13|24, 14|23, 1|234, 14|2|3, 1|24|3, 1|2|34, 1|2|3|4. - Alois P. Heinz, May 22 2017
Min_{n >= 1} a(n+1)/a(n) = 8/3. This is the answer to the 4th problem proposed during the first day of the final round of the 16th Austrian Mathematical Olympiad in 1985 (see link IMO Compendium). - Bernard Schott, Jan 07 2019
If n rings of different internal diameter can fit close together on a tapering column, a(n) is the number of different arrangements of at least one ring. For example, if the rings increasing in size are 1, 2 and 3, then a(3) = 8 corresponding to the possible arrangements from the point on the column of smallest diameter (1XX), (X2X), (XX3), (12X), (32X), (1X3), (X23) and (123), where X denotes a space on the column. - Ian Duff, Jun 23 2025

Examples

			For n = 3 we get a(3) = 3^1 + 2^2 + 1^3 = 8. For n = 4 we get a(4) = 4^1 + 3^2 + 2^3 + 1^4 = 22.
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

First differences are in A047970.

Programs

  • Haskell
    a003101 n = sum $ zipWith (^) [0 ..] [n + 1, n .. 1]
    -- Reinhard Zumkeller, Sep 14 2014
    
  • Magma
    [n eq 0 select 0 else (&+[(n-j+1)^j: j in [1..n]]): n in [0..50]]; // G. C. Greubel, Oct 26 2022
    
  • Maple
    A003101 := n->add((n-k+1)^k, k=1..n);
    a:= n-> add((n-j+1)^j, j=1..n): seq(a(n), n=0..30); # Zerinvary Lajos, Jun 07 2008
  • Mathematica
    Table[Sum[(n-k+1)^k,{k,n}],{n,0,25}] (* Harvey P. Dale, Aug 14 2011 *)
  • PARI
    a(n)=sum(k=1,n,(n-k+1)^k) \\ Charles R Greathouse IV, Oct 31 2011
    
  • SageMath
    def A003101(n): return sum( (n-k+1)^k for k in range(1,n+1))
    [A003101(n) for n in range(50)] # G. C. Greubel, Oct 26 2022

Formula

a(n) = A026898(n) - 1.
G.f.: G(0)/x-1/(1-x)/x where G(k) = 1 + x*(2*k*x-1)/((2*k*x+x-1) - x*(2*k*x+x-1)^2/(x*(2*k*x+x-1) + (2*k*x+2*x-1)/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 26 2013
G.f.: Sum_{k>=1} x^k/(1 - (k + 1)*x). - Ilya Gutkovskiy, Oct 09 2018
a(n) = n^1 + (n-1)^2 + (n-2)^3 + ... + 3^(n-2) + 2^(n-1) + 1^n. - Bernard Schott, Jan 07 2019
log(a(n)) ~ (1 - 1/LambertW(exp(1)*n)) * n * log(1 + n/LambertW(exp(1)*n)). - Vaclav Kotesovec, Jun 15 2021
a(n) ~ sqrt(2*Pi/(n+1 + w(n))) * w(n)^(n+2 - w(n)), where w(n) = (n+1)/LambertW(exp(1)*(n+1)). - Vaclav Kotesovec, Jun 25 2021, after user "leonbloy", see Mathematics Stack Exchange link.

A007412 The noncubes: a(n) = n + floor((n + floor(n^(1/3)))^(1/3)).

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71
Offset: 1

Views

Author

Keywords

Comments

Seems to be numbers k for which the order of the torsion subgroup t of the elliptic curve y^2 = x^3 - k is t=1. - Artur Jasinski, Jun 30 2010
A010057(a(n)) = 0. - Reinhard Zumkeller, Oct 22 2011

References

  • J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 27911
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000578 (complement), A000037 (nonsquares).

Programs

  • Haskell
    a007412 n = n + a048766 (n + a048766 n)  -- Reinhard Zumkeller, Oct 22 2011
    
  • Mathematica
    With[{upto=58},Complement[Range[upto],Range[Ceiling[Power[upto, (3)^-1]]]^3]] (* Harvey P. Dale, Nov 09 2011 *)
    A007412Q = ! IntegerQ[#~Surd~3] &; Select[Range[57], A007412Q] (* JungHwan Min, Mar 27 2017 *)
  • PARI
    lista(nn) = for (n=1, nn, if (! ispower(n, 3), print1(n, ", "))); \\ Michel Marcus, May 24 2015
    
  • PARI
    list(lim)=my(v=List(),s=sqrtnint(lim\=1,3),k3,k13=1); for(k=1,s, k3=k13; k13=(k+1)^3; for(n=k3+1,k13-1, listput(v,n))); for(n=s^3+1,lim, listput(v,n)); Vec(v) \\ Charles R Greathouse IV, Jun 13 2024
    
  • Python
    from sympy import integer_nthroot
    def A007412(n): return n+(k:=integer_nthroot(n,3)[0])+int(n>=(k+1)**3-k) # Chai Wah Wu, Jun 17 2024

Formula

a(n) = n + A048766(n + A048766(n)). - Reinhard Zumkeller, Oct 22 2011
a(n) = n + n^(1/3) + O(1). - Charles R Greathouse IV, Aug 08 2024

A003100 Decimal Gray code for n.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 59, 58, 57, 56, 55, 54, 53, 52, 51, 50, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 79, 78, 77
Offset: 0

Views

Author

Keywords

Comments

This permutation of the nonnegative integers is not self-inverse, as previously claimed. The first exception is a(100) = 190, but a(190) = 109. - Franklin T. Adams-Watters, Mar 05 2010
a(n) = A118757(n) for n<=100, = a(100)=A118757(100)=190, but a(101)=191, A118757(101)=180. - Reinhard Zumkeller, May 01 2006

References

  • M. Gardner, Knotted Doughnuts and Other Mathematical Entertainments. Freeman, NY, 1986, p. 18.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Inverse is A174025.

Programs

  • Maple
    A003100 :=proc(n)
        local s,i:
        s:=[op(convert(n,base,10)),0]:
        add(piecewise(s[i+1] mod 2=0,s[i],9-s[i])*10^(i-1),i=1..nops(s)-1) :
    end proc:
    seq(A003100(j),j=0..100); # Pab Ter, Oct 14 2005

Extensions

More terms from Pab Ter (pabrlos2(AT)yahoo.com), Oct 14 2005
Incorrect comment replaced by Franklin T. Adams-Watters, Mar 05 2010

A003150 Fibonomial Catalan numbers.

Original entry on oeis.org

1, 1, 3, 20, 364, 17017, 2097018, 674740506, 568965009030, 1255571292290712, 7254987185250544104, 109744478168199574282739, 4346236474244131564253156182, 450625464087974723307205504432150, 122319234225590858340579679211039433810
Offset: 0

Views

Author

Keywords

Examples

			a(5) = F(10)...F(7)/(F(5)...F(1)) = 55*34*21*13/(5*3*2*1*1) = 17017.
		

References

  • H. W. Gould, Fibonomial Catalan numbers: arithmetic properties and a table of the first fifty numbers, Abstract 71T-A216, Notices Amer. Math. Soc, 1971, page 938.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    QBinomial:= func< n, k, q | (&*[( 1-q^(n-j) )/( 1-q^(j+1) ): j in [0..k-1]]) >;
    A003150:= func< n | n eq 0 select 1 else Round( ((1+Sqrt(5))/2)^(n^2)*QBinomial( 2*n, n, -2/(3+Sqrt(5)) )/Fibonacci(n+1) ) >;
    [A003150(n): n in [0..30]]; // G. C. Greubel, Nov 04 2022
    
  • Maple
    A010048 := proc(n,k) local a,j ; a := 1 ; for j from 0 to k-1 do a := a*combinat[fibonacci](n-j)/combinat[fibonacci](k-j) ; end do: return a; end proc:
    A003150 := proc(n) A010048(2*n,n)/combinat[fibonacci](n+1) ; end proc:
    seq(A003150(n),n=0..20) ; # R. J. Mathar, Dec 06 2010
  • Mathematica
    f[n_]:= f[n]= Fibonacci[n]; a[n_]:=Product[f[k], {k,n+2,2n}]/Product[f[k], {k,n}]; Table[a[n], {n, 0, 13}] (* Jean-François Alcover, Dec 14 2011 *)
    Table[Fibonorial[2 n]/(Fibonorial[n] Fibonorial[n+1]), {n, 0, 20}] (* Since v. 10.0, Vladimir Reshetnikov, May 21 2016 *)
    Round@Table[GoldenRatio^(n^2) QBinomial[2 n, n, -1/GoldenRatio^2]/Fibonacci[n + 1], {n, 0, 20}] (* Round is equivalent to FullSimplify here, but is much faster - Vladimir Reshetnikov, Sep 25 2016 *)
  • PARI
    ft(n) = prod(k=1, n, fibonacci(k)); \\ A003266
    fn(n,k) = ft(n)/(ft(k)*ft(n-k)); \\ A010048
    a(n) = fn(2*n, n)/fibonacci(n+1); \\ Michel Marcus, Aug 05 2023
  • SageMath
    def A003150(n): return round( golden_ratio^(n^2)*gaussian_binomial(2*n, n, -1/golden_ratio^2)/fibonacci(n+1) )
    [A003150(n) for n in range(30)] # G. C. Greubel, Nov 04 2022
    

Formula

F(2n)*F(2n-1)* ...* F(n+2)/(F(n)*F(n-1)* ... *F(1)) = A010048(2*n,n)/F(n+1), F = Fibonacci numbers.
a(n) ~ sqrt(5) * phi^(n^2-n-1) / C, where phi = A001622 = (1+sqrt(5))/2 is the golden ratio and C = A062073 = 1.22674201072035324441763... is the Fibonacci factorial constant. - Vaclav Kotesovec, Apr 10 2015
a(n) = A003267(n)/F(n+1) = A010048(2*n, n)/F(n+1) = phi^(n^2) * C(2*n, n)A001622%20is%20the%20golden%20ratio,%20and%20C(n,%20k)_q%20is%20the%20q-binomial%20coefficient.%20-%20_Vladimir%20Reshetnikov">{-1/phi^2} / F(n+1), where phi = (1+sqrt(5))/2 = A001622 is the golden ratio, and C(n, k)_q is the q-binomial coefficient. - _Vladimir Reshetnikov, Sep 27 2016

A084561 Numbers with a square number of 1's in their binary expansion.

Original entry on oeis.org

0, 1, 2, 4, 8, 15, 16, 23, 27, 29, 30, 32, 39, 43, 45, 46, 51, 53, 54, 57, 58, 60, 64, 71, 75, 77, 78, 83, 85, 86, 89, 90, 92, 99, 101, 102, 105, 106, 108, 113, 114, 116, 120, 128, 135, 139, 141, 142, 147, 149, 150, 153, 154, 156, 163, 165, 166, 169, 170, 172, 177, 178
Offset: 1

Views

Author

Jason Earls, Jun 27 2003

Keywords

Comments

Begins to differ from A084345 at the 22nd term.
There are A003099(n) terms with at most n bits, so a(n) is n sqrt log n times a bounded function of n (which does not tend toward a limit). - Charles R Greathouse IV, Mar 26 2013

Crossrefs

Programs

  • Mathematica
    Select[Range[0,178],IntegerQ[Sqrt[Count[IntegerDigits[#,2],1]]]&] (* Jayanta Basu, May 24 2013 *)
  • PARI
    is(n)=issquare(hammingweight(n)) \\ Charles R Greathouse IV, Mar 26 2013

A003235 a(n) = Sum_{k=0..n} (-1)^(n-k) C(n,k)*C(k^2,n).

Original entry on oeis.org

1, 1, 6, 72, 1322, 32550, 1003632, 37162384, 1605962556, 79330914540, 4409098539560, 272297452742304, 18499002436677336, 1371050716542451672, 110085169034456183232, 9519063815009322326400, 881914870734754844035088, 87154631117420724492647184
Offset: 0

Views

Author

Keywords

References

  • H. W. Gould, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A346184.

Programs

  • Mathematica
    Table[Sum[(-1)^(n-k) * Binomial[n,k] * Binomial[k^2, n], {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, Dec 13 2020 *)

Formula

a(n) ~ c * d^n * (n-1)!, where d = 4 / (w*(2-w)) = 6.17655460948348035823168... and c = exp(1/2 - w^2/8) / (2*Pi*sqrt(2*(1-w)/w)) = 0.150381859108542022051646532351211728293419626579836320368956458003898775818..., where w = -LambertW(-2*exp(-2)) = -A226775. - Vaclav Kotesovec, Dec 13 2020, updated Jul 09 2021
A003236(n) / a(n) ~ -2 / LambertW(-2*exp(-2)) = 4.92155363456750509... - Vaclav Kotesovec, Jul 09 2021

Extensions

More terms from Sean A. Irvine, Mar 19 2015
Showing 1-10 of 17 results. Next