A072456 Annihilating primes for A000522.
3, 7, 11, 17, 47, 53, 61, 67, 73, 79, 89, 101, 139, 151, 157, 191, 199, 229, 233, 241, 263, 269, 277, 283, 311, 317, 337, 347, 359, 367, 379, 397, 433, 449, 467, 487, 503, 521, 541, 563, 569, 571, 577, 593, 607, 613, 619, 647, 659, 673, 683, 691, 727, 743, 769, 773, 809, 823, 827, 911, 919, 929, 953, 971, 991
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..3000
- C. Cobeli and A. Zaharescu, Promenade around Pascal Triangle-Number Motives, Bull. Math. Soc. Sci. Math. Roumanie, Tome 56(104) No. 1, 2013, pp. 73-98. - From _N. J. A. Sloane_, Feb 16 2013
- Lorenz Halbeisen and Norbert Hungerbuehler, Number theoretic aspects of a combinatorial function, Notes on Number Theory and Discrete Mathematics 5 (1999) 138-150. (ps, pdf)
- Wikipedia, Annihilating primes
Programs
-
Perl
use warnings; use strict; use ntheory ":all"; use Math::GMPz; use Memoize; memoize 'a000522'; sub a000522 { my($n, $sum, $fn) = (shift, 0, Math::GMPz->new(1)); do { $sum += $fn; $fn *= ($n-$_); } for 0 .. $n; $sum; } sub a072453 { my $n = shift; vecsum( map { a000522($_) % $n == 0 } 0 .. $n-1 ); } forprimes { print "$\n" unless a072453($) } 1000; # Dana Jacobsen, Feb 16 2016
Extensions
More terms from Vladeta Jovovic, Aug 02 2002
Offset corrected by Amiram Eldar, May 15 2020
Comments