A167006
G.f.: exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n^2, n*k) ).
Original entry on oeis.org
1, 2, 6, 66, 4258, 1337374, 1933082159, 11353941470188, 291885138650054688, 29463501750534915665304, 12844314786465829040693498639, 21675661852919288704454219459892060, 156969579902607123047763327413679853875703
Offset: 0
G.f.: A(x) = 1 + 2*x + 6*x^2 + 66*x^3 + 4258*x^4 + 1337374*x^5 +...
log(A(x)) = 2*x + 8*x^2/2 + 170*x^3/3 + 16512*x^4/4 + 6643782*x^5/5 + 11582386286*x^6/6 +...+ A167009(n)*x^n/n +...
-
{a(n)=polcoeff(exp(sum(m=1,n,sum(k=0,m,binomial(m^2,k*m))*x^m/m)+x*O(x^n)),n)}
for(n=0,20,print1(a(n),", "))
A206849
a(n) = Sum_{k=0..n} binomial(n^2, k^2).
Original entry on oeis.org
1, 2, 6, 137, 13278, 4098627, 8002879629, 66818063663192, 1520456935214867934, 167021181249536494996841, 102867734705055054467692090431, 179314863425920182637610314008444247, 1094998941099523423274757578750950802034789
Offset: 0
L.g.f.: L(x) = 2*x + 6*x^2/2 + 137*x^3/3 + 13278*x^4/4 + 4098627*x^5/5 +...
where exponentiation yields the g.f. of A206848:
exp(L(x)) = 1 + 2*x + 5*x^2 + 53*x^3 + 3422*x^4 + 826606*x^5 + 1335470713*x^6 +...
Illustration of terms: by definition,
a(1) = C(1,0) + C(1,1);
a(2) = C(4,0) + C(4,1) + C(4,4);
a(3) = C(9,0) + C(9,1) + C(9,4) + C(9,9);
a(4) = C(16,0) + C(16,1) + C(16,4) + C(16,9) + C(16,16);
a(5) = C(25,0) + C(25,1) + C(25,4) + C(25,9) + C(25,16) + C(25,25);
a(6) = C(36,0) + C(36,1) + C(36,4) + C(36,9) + C(36,16) + C(36,25) + C(36,36); ...
Numerically, the above evaluates to be:
a(1) = 1 + 1 = 2;
a(2) = 1 + 4 + 1 = 6;
a(3) = 1 + 9 + 126 + 1 = 137;
a(4) = 1 + 16 + 1820 + 11440 + 1 = 13278;
a(5) = 1 + 25 + 12650 + 2042975 + 2042975 + 1 = 4098627;
a(6) = 1 + 36 + 58905 + 94143280 + 7307872110 + 600805296 + 1 = 8002879629; ...
-
Table[Sum[Binomial[n^2, k^2],{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Mar 03 2014 *)
-
{a(n)=sum(k=0, n,binomial(n^2,k^2))}
for(n=0, 20, print1(a(n), ", "))
A228902
Triangle defined by g.f. A(x,y) = exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n^2, k^2) * y^k ), as read by rows.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 6, 45, 1, 1, 10, 505, 2905, 1, 1, 15, 3045, 412044, 411500, 1, 1, 21, 12880, 16106168, 1218805926, 100545716, 1, 1, 28, 43176, 309616264, 479536629727, 9030648908720, 37614371968, 1, 1, 36, 122640, 3752248896, 61545730104024, 50139332516318674, 139855355007409180, 19977489354808, 1
Offset: 0
This triangle begins:
1;
1, 1;
1, 3, 1;
1, 6, 45, 1;
1, 10, 505, 2905, 1;
1, 15, 3045, 412044, 411500, 1;
1, 21, 12880, 16106168, 1218805926, 100545716, 1;
1, 28, 43176, 309616264, 479536629727, 9030648908720, 37614371968, 1;
1, 36, 122640, 3752248896, 61545730104024, 50139332516318674, 139855355007409180, 19977489354808, 1;
...
G.f.: A(x,y) = 1 + (1+y)*x + (1+3*y+y^2)*x^2 + (1+6*y+45*y^2+y^3)*x^3 + (1+10*y+505*y^2+2905*y^3+y^4)*x^4 + (1+15*y+3045*y^2+412044*y^3+411500*y^4+y^5)*x^5 +...
The logarithm of the g.f. equals the series:
log(A(x,y)) = (1 + y)*x
+ (1 + 4*y + y^2)*x^2/2
+ (1 + 9*y + 126*y^2 + y^3)*x^3/3
+ (1 + 16*y + 1820*y^2 + 11440*y^3 + y^4)*x^4/4
+ (1 + 25*y + 12650*y^2 + 2042975*y^3 + 2042975*y^4 + y^5)*x^5/5
+ (1 + 36*y + 58905*y^2 + 94143280*y^3 + 7307872110*y^4 + 600805296*y^5 + y^6)*x^/6
+ ...
in which the coefficients form A226234(n,k) = binomial(n^2, k^2).
-
{T(n, k)=polcoeff(polcoeff(exp(sum(m=1, n, x^m/m*sum(j=0, m, binomial(m^2, j^2)*y^j))+x*O(x^n)), n, x), k, y)}
for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))
A228809
G.f.: exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n*k, k^2) ).
Original entry on oeis.org
1, 2, 4, 12, 94, 2195, 158904, 31681195, 13904396167, 15305894726347, 44888344014554903, 288228807835914177564, 4270880356112396772814732, 169380654509201278629725097906, 15394658527137259981745081997280638, 3042352591056504014301304188228238554499
Offset: 0
G.f.: A(x) = 1 + 2*x + 4*x^2 + 12*x^3 + 94*x^4 + 2195*x^5 +...
where
log(A(x)) = 2*x + 4*x^2/2 + 20*x^3/3 + 296*x^4/4 + 10067*x^5/5 + 927100*x^6/6 +...+ A228808(n)*x^n/n +...
-
{a(n)=polcoeff(exp(sum(m=1, n, x^m/m*sum(k=0, m, binomial(m*k, k^2)))+x*O(x^n)), n)}
for(n=0, 20, print1(a(n), ", "))
A206846
G.f.: exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n^2,k^2) * binomial(n^2,(n-k)^2) ).
Original entry on oeis.org
1, 2, 11, 776, 921193, 10359730908, 1620677532919905, 1969126979596399128130, 32593711828578589304123599877, 3931730912701446701027876250509820962, 6413805618092047206104426809813307222469463650, 74040826359052943559114050244071546075856822107307951070
Offset: 0
G.f.: A(x) = 1 + 2*x + 11*x^2 + 776*x^3 + 921193*x^4 + 10359730908*x^5 +...
where the logarithm of the g.f. yields the l.g.f. of A206847:
log(A(x)) = 2*x + 18*x^2/2 + 2270*x^3/3 + 3678482*x^4/4 + 51789416252*x^5/5 +...
-
{a(n)=polcoeff(exp(sum(m=1, n, sum(k=0, m, binomial(m^2,k^2)*binomial(m^2,(m-k)^2))*x^m/m)+x*O(x^n)), n)}
for(n=0, 25, print1(a(n), ", "))
Showing 1-5 of 5 results.
Comments