cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A167006 G.f.: exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n^2, n*k) ).

Original entry on oeis.org

1, 2, 6, 66, 4258, 1337374, 1933082159, 11353941470188, 291885138650054688, 29463501750534915665304, 12844314786465829040693498639, 21675661852919288704454219459892060, 156969579902607123047763327413679853875703
Offset: 0

Views

Author

Paul D. Hanna, Nov 17 2009

Keywords

Comments

Logarithmic derivative yields A167009.
Equals row sums of triangle A209196.

Examples

			G.f.: A(x) = 1 + 2*x + 6*x^2 + 66*x^3 + 4258*x^4 + 1337374*x^5 +...
log(A(x)) = 2*x + 8*x^2/2 + 170*x^3/3 + 16512*x^4/4 + 6643782*x^5/5 + 11582386286*x^6/6 +...+ A167009(n)*x^n/n +...
		

Crossrefs

Cf. variants: A206848, A228809.

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n,sum(k=0,m,binomial(m^2,k*m))*x^m/m)+x*O(x^n)),n)}
    for(n=0,20,print1(a(n),", "))

A206849 a(n) = Sum_{k=0..n} binomial(n^2, k^2).

Original entry on oeis.org

1, 2, 6, 137, 13278, 4098627, 8002879629, 66818063663192, 1520456935214867934, 167021181249536494996841, 102867734705055054467692090431, 179314863425920182637610314008444247, 1094998941099523423274757578750950802034789
Offset: 0

Views

Author

Paul D. Hanna, Feb 15 2012

Keywords

Examples

			L.g.f.: L(x) = 2*x + 6*x^2/2 + 137*x^3/3 + 13278*x^4/4 + 4098627*x^5/5 +...
where exponentiation yields the g.f. of A206848:
exp(L(x)) = 1 + 2*x + 5*x^2 + 53*x^3 + 3422*x^4 + 826606*x^5 + 1335470713*x^6 +...
Illustration of terms: by definition,
a(1) = C(1,0) + C(1,1);
a(2) = C(4,0) + C(4,1) + C(4,4);
a(3) = C(9,0) + C(9,1) + C(9,4) + C(9,9);
a(4) = C(16,0) + C(16,1) + C(16,4) + C(16,9) + C(16,16);
a(5) = C(25,0) + C(25,1) + C(25,4) + C(25,9) + C(25,16) + C(25,25);
a(6) = C(36,0) + C(36,1) + C(36,4) + C(36,9) + C(36,16) + C(36,25) + C(36,36); ...
Numerically, the above evaluates to be:
a(1) = 1 + 1 = 2;
a(2) = 1 + 4 + 1 = 6;
a(3) = 1 + 9 + 126 + 1 = 137;
a(4) = 1 + 16 + 1820 + 11440 + 1 = 13278;
a(5) = 1 + 25 + 12650 + 2042975 + 2042975 + 1 = 4098627;
a(6) = 1 + 36 + 58905 + 94143280 + 7307872110 + 600805296 + 1 = 8002879629; ...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n^2, k^2],{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Mar 03 2014 *)
  • PARI
    {a(n)=sum(k=0, n,binomial(n^2,k^2))}
    for(n=0, 20, print1(a(n), ", "))

Formula

Ignoring the initial term a(0), equals the logarithmic derivative of A206848.
Equals the row sums of triangle A226234.
From Vaclav Kotesovec, Mar 03 2014: (Start)
Limit n->infinity a(n)^(1/n^2) = 2
Lim sup n->infinity a(n)/(2^(n^2)/n) = sqrt(2/Pi) * JacobiTheta3(0,exp(-4)) = Sqrt[2/Pi] * EllipticTheta[3, 0, 1/E^4] = 0.827112271364145742...
Lim inf n->infinity a(n)/(2^(n^2)/n) = sqrt(2/Pi) * JacobiTheta2(0,exp(-4)) = Sqrt[2/Pi] * EllipticTheta[2, 0, 1/E^4] = 0.587247586271786487...
(End)

A228902 Triangle defined by g.f. A(x,y) = exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n^2, k^2) * y^k ), as read by rows.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 6, 45, 1, 1, 10, 505, 2905, 1, 1, 15, 3045, 412044, 411500, 1, 1, 21, 12880, 16106168, 1218805926, 100545716, 1, 1, 28, 43176, 309616264, 479536629727, 9030648908720, 37614371968, 1, 1, 36, 122640, 3752248896, 61545730104024, 50139332516318674, 139855355007409180, 19977489354808, 1
Offset: 0

Views

Author

Paul D. Hanna, Sep 07 2013

Keywords

Examples

			This triangle begins:
  1;
  1, 1;
  1, 3, 1;
  1, 6, 45, 1;
  1, 10, 505, 2905, 1;
  1, 15, 3045, 412044, 411500, 1;
  1, 21, 12880, 16106168, 1218805926, 100545716, 1;
  1, 28, 43176, 309616264, 479536629727, 9030648908720, 37614371968, 1;
  1, 36, 122640, 3752248896, 61545730104024, 50139332516318674, 139855355007409180, 19977489354808, 1;
  ...
G.f.: A(x,y) = 1 + (1+y)*x + (1+3*y+y^2)*x^2 + (1+6*y+45*y^2+y^3)*x^3 + (1+10*y+505*y^2+2905*y^3+y^4)*x^4 + (1+15*y+3045*y^2+412044*y^3+411500*y^4+y^5)*x^5 +...
The logarithm of the g.f. equals the series:
log(A(x,y)) = (1 + y)*x
   + (1 + 4*y + y^2)*x^2/2
   + (1 + 9*y + 126*y^2 + y^3)*x^3/3
   + (1 + 16*y + 1820*y^2 + 11440*y^3 + y^4)*x^4/4
   + (1 + 25*y + 12650*y^2 + 2042975*y^3 + 2042975*y^4 + y^5)*x^5/5
   + (1 + 36*y + 58905*y^2 + 94143280*y^3 + 7307872110*y^4 + 600805296*y^5 + y^6)*x^/6
   + ...
in which the coefficients form A226234(n,k) = binomial(n^2, k^2).
		

Crossrefs

Cf. A206848 (row sums), A206850 (antidiagonal sums), A228903 (diagonal).
Cf. related triangles: A226234 (log), A209196, A228900, A228904.

Programs

  • PARI
    {T(n, k)=polcoeff(polcoeff(exp(sum(m=1, n, x^m/m*sum(j=0, m, binomial(m^2, j^2)*y^j))+x*O(x^n)), n, x), k, y)}
    for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))

A228809 G.f.: exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n*k, k^2) ).

Original entry on oeis.org

1, 2, 4, 12, 94, 2195, 158904, 31681195, 13904396167, 15305894726347, 44888344014554903, 288228807835914177564, 4270880356112396772814732, 169380654509201278629725097906, 15394658527137259981745081997280638, 3042352591056504014301304188228238554499
Offset: 0

Views

Author

Paul D. Hanna, Sep 04 2013

Keywords

Comments

Logarithmic derivative equals A228808.
Equals row sums of triangle A228904.

Examples

			G.f.: A(x) = 1 + 2*x + 4*x^2 + 12*x^3 + 94*x^4 + 2195*x^5 +...
where
log(A(x)) = 2*x + 4*x^2/2 + 20*x^3/3 + 296*x^4/4 + 10067*x^5/5 + 927100*x^6/6 +...+ A228808(n)*x^n/n +...
		

Crossrefs

Cf. variants: A167006, A206848.

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n, x^m/m*sum(k=0, m, binomial(m*k, k^2)))+x*O(x^n)), n)}
    for(n=0, 20, print1(a(n), ", "))

A206846 G.f.: exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n^2,k^2) * binomial(n^2,(n-k)^2) ).

Original entry on oeis.org

1, 2, 11, 776, 921193, 10359730908, 1620677532919905, 1969126979596399128130, 32593711828578589304123599877, 3931730912701446701027876250509820962, 6413805618092047206104426809813307222469463650, 74040826359052943559114050244071546075856822107307951070
Offset: 0

Views

Author

Paul D. Hanna, Feb 15 2012

Keywords

Comments

Logarithmic derivative yields A206847.

Examples

			G.f.: A(x) = 1 + 2*x + 11*x^2 + 776*x^3 + 921193*x^4 + 10359730908*x^5 +...
where the logarithm of the g.f. yields the l.g.f. of A206847:
log(A(x)) = 2*x + 18*x^2/2 + 2270*x^3/3 + 3678482*x^4/4 + 51789416252*x^5/5 +...
		

Crossrefs

Cf. A206847 (log), A206848, A206850.

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n, sum(k=0, m, binomial(m^2,k^2)*binomial(m^2,(m-k)^2))*x^m/m)+x*O(x^n)), n)}
    for(n=0, 25, print1(a(n), ", "))
Showing 1-5 of 5 results.