cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A167006 G.f.: exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n^2, n*k) ).

Original entry on oeis.org

1, 2, 6, 66, 4258, 1337374, 1933082159, 11353941470188, 291885138650054688, 29463501750534915665304, 12844314786465829040693498639, 21675661852919288704454219459892060, 156969579902607123047763327413679853875703
Offset: 0

Views

Author

Paul D. Hanna, Nov 17 2009

Keywords

Comments

Logarithmic derivative yields A167009.
Equals row sums of triangle A209196.

Examples

			G.f.: A(x) = 1 + 2*x + 6*x^2 + 66*x^3 + 4258*x^4 + 1337374*x^5 +...
log(A(x)) = 2*x + 8*x^2/2 + 170*x^3/3 + 16512*x^4/4 + 6643782*x^5/5 + 11582386286*x^6/6 +...+ A167009(n)*x^n/n +...
		

Crossrefs

Cf. variants: A206848, A228809.

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n,sum(k=0,m,binomial(m^2,k*m))*x^m/m)+x*O(x^n)),n)}
    for(n=0,20,print1(a(n),", "))

A228904 Triangle defined by g.f. A(x,y) = exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n*k, k^2) * y^k ), as read by rows.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 7, 1, 1, 4, 26, 62, 1, 1, 5, 70, 1087, 1031, 1, 1, 6, 155, 9257, 124702, 24782, 1, 1, 7, 301, 51397, 4479983, 26375325, 774180, 1, 1, 8, 532, 215129, 79666708, 5059028293, 8735721640, 29763855, 1, 1, 9, 876, 736410, 891868573, 357346615545, 10783389596184, 4162906254188, 1359654560, 1
Offset: 0

Views

Author

Paul D. Hanna, Sep 07 2013

Keywords

Examples

			This triangle begins:
1;
1, 1;
1, 2, 1;
1, 3, 7, 1;
1, 4, 26, 62, 1;
1, 5, 70, 1087, 1031, 1;
1, 6, 155, 9257, 124702, 24782, 1;
1, 7, 301, 51397, 4479983, 26375325, 774180, 1;
1, 8, 532, 215129, 79666708, 5059028293, 8735721640, 29763855, 1;
1, 9, 876, 736410, 891868573, 357346615545, 10783389596184, 4162906254188, 1359654560, 1;
...
G.f.: A(x,y) = 1 + (1+y)*x + (1+2*y+y^2)*x^2 + (1+3*y+7*y^2+y^3)*x^3 + (1+4*y+26*y^2+62*y^3+y^4)*x^4 + (1+5*y+70*y^2+1087*y^3+1031*y^4+y^5)*x^5 +...
The logarithm of the g.f. equals the series:
log(A(x,y)) = (1 + y)*x
+ (1 + 2*y + y^2)*x^2/2
+ (1 + 3*y + 15*y^2 + y^3)*x^3/3
+ (1 + 4*y + 70*y^2 + 220*y^3 + y^4)*x^4/4
+ (1 + 5*y + 210*y^2 + 5005*y^3 + 4845*y^4 + y^5)*x^5/5
+ (1 + 6*y + 495*y^2 + 48620*y^3 + 735471*y^4 + 142506*y^5 + y^6)*x^6/6 +...
in which the coefficients form A228832(n,k) = binomial(n*k, k^2).
		

Crossrefs

Cf. A228809 (row sums), A228905 (antidiagonal sums), A228906 (diagonal).
Cf. related triangles: A228832 (log), A209196, A228900, A228902.

Programs

  • PARI
    {T(n, k)=polcoeff(polcoeff(exp(sum(m=1, n, x^m/m*sum(j=0, m, binomial(m*j, j^2)*y^j))+x*O(x^n)), n, x), k, y)}
    for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))

A206848 G.f.: exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n^2, k^2) ).

Original entry on oeis.org

1, 2, 5, 53, 3422, 826606, 1335470713, 9548109569885, 190076214495558260, 18558289189760778318731, 10286810587274357297985552184, 16301371794177939084545371104827679, 91249944361047494534207504939405352235731, 3283593155431496336538359592977826684908598341441
Offset: 0

Views

Author

Paul D. Hanna, Feb 15 2012

Keywords

Comments

Logarithmic derivative yields A206849.
Equals row sums of triangle A228902.

Examples

			G.f.: A(x) = 1 + 2*x + 5*x^2 + 53*x^3 + 3422*x^4 + 826606*x^5 + 1335470713*x^6 +...
where the logarithm of the g.f. yields the l.g.f. of A206849:
log(A(x)) = 2*x + 6*x^2/2 + 137*x^3/3 + 13278*x^4/4 + 4098627*x^5/5 +...
		

Crossrefs

Cf. variants: A167006, A228809.

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n, sum(k=0, m, binomial(m^2,k^2))*x^m/m)+x*O(x^n)), n)}
    for(n=0, 25, print1(a(n), ", "))

A228808 a(n) = Sum_{k=0..n} binomial(n*k, k^2).

Original entry on oeis.org

1, 2, 4, 20, 296, 10067, 927100, 219541877, 110728186648, 137502766579907, 448577320868198789, 3169529341990169816462, 51243646781214826181569316, 2201837465728010770618930322223, 215520476721579201896200887266792583, 45634827026091489574547858030506357191920
Offset: 0

Views

Author

Paul D. Hanna, Sep 04 2013

Keywords

Comments

Ignoring initial term, equals the logarithmic derivative of A228809.
Equals row sums of triangle A228832.

Examples

			L.g.f.: L(x) = 2*x + 4*x^2/2 + 20*x^3/3 + 296*x^4/4 + 10067*x^5/5 +...
where
exp(L(x)) = 1 + 2*x + 4*x^2 + 12*x^3 + 94*x^4 + 2195*x^5 + 158904*x^6 + 31681195*x^7 +...+ A228809(n)*x^n +...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n*k, k^2],{k,0,n}],{n,0,15}] (* Vaclav Kotesovec, Sep 06 2013 *)
  • PARI
    a(n)=sum(k=0,n,binomial(n*k,k^2))
    for(n=0,20,print1(a(n),", "))

Formula

Limit n->infinity a(n)^(1/n^2) = (1-r)^(-r/2) = 1.533628065110458582053143..., where r = A220359 = 0.70350607643066243... is the root of the equation (1-r)^(2*r-1) = r^(2*r). - Vaclav Kotesovec, Sep 06 2013
Showing 1-4 of 4 results.