cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A237421 Decimal expansion of the root of the equation (1-r)^(2*r) = r^(2*r+1).

Original entry on oeis.org

6, 0, 3, 2, 3, 2, 6, 8, 3, 7, 7, 4, 1, 3, 6, 2, 0, 6, 2, 2, 0, 1, 9, 2, 6, 5, 0, 9, 4, 8, 6, 6, 8, 2, 2, 0, 4, 2, 0, 9, 6, 2, 5, 1, 4, 2, 1, 1, 7, 4, 8, 7, 4, 8, 0, 4, 2, 4, 0, 3, 6, 1, 5, 4, 8, 8, 9, 6, 6, 5, 7, 3, 0, 6, 0, 4, 3, 0, 0, 6, 9, 7, 3, 8, 3, 0, 3, 2, 1, 9, 2, 7, 2, 3, 5, 2, 6, 2, 5, 4, 7, 6, 9, 7, 7, 3
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 04 2014

Keywords

Examples

			0.6032326837741362...
		

Crossrefs

Programs

  • Maple
    Digits:= 140:
    v:= convert(fsolve((1-r)^(2*r) = r^(2*r+1), r=1/2), string):
    seq(parse(v[n+2]), n=0..120);
  • Mathematica
    RealDigits[r/.FindRoot[(1-r)^(2*r)==r^(2*r+1), {r, 1/2}, WorkingPrecision->250], 10, 200][[1]]

A206152 a(n) = Sum_{k=0..n} binomial(n,k)^(n+k).

Original entry on oeis.org

1, 2, 10, 326, 64066, 111968752, 1091576358244, 106664423412770932, 67305628532703785062402, 329378455047908259704557301276, 15577435010841058543979449475481629020, 4149966977623235242137197627437116176363522092
Offset: 0

Views

Author

Paul D. Hanna, Feb 04 2012

Keywords

Comments

Ignoring initial term, equals the logarithmic derivative of A206151.

Examples

			L.g.f.: L(x) = 2*x + 10*x^2/2 + 326*x^3/3 + 64066*x^4/4 + 111968752*x^5/5 +...
where exponentiation yields A206151:
exp(L(x)) = 1 + 2*x + 7*x^2 + 120*x^3 + 16257*x^4 + 22426576*x^5 +...
Illustration of initial terms:
a(1) = 1^1 + 1^2 = 2;
a(2) = 1^2 + 2^3 + 1^4 = 10;
a(3) = 1^3 + 3^4 + 3^5 + 1^6 = 326;
a(4) = 1^4 + 4^5 + 6^6 + 4^7 + 1^8 = 64066; ...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n,k]^(n+k), {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 03 2014 *)
  • PARI
    {a(n)=sum(k=0,n,binomial(n,k)^(n+k))}

Formula

Limit n->infinity a(n)^(1/n^2) = r^(-(1+r)^2/(2*r)) = 2.93544172048274005711865243..., where r = 0.6032326837741362... (see A237421) is the root of the equation (1-r)^(2*r) = r^(2*r+1). - Vaclav Kotesovec, Mar 03 2014

A245242 a(n) = Sum_{k=0..n} binomial(n^2 - k^2, n*k - k^2).

Original entry on oeis.org

1, 2, 5, 40, 987, 73026, 15656191, 9146092572, 15579632823935, 71399036100619112, 916371430754269894286, 33098484899485154272997507, 3182514246669584511131232330210, 875352526298195795986890973534420721, 650999500319874632196352991280266092913655
Offset: 0

Views

Author

Paul D. Hanna, Jul 14 2014

Keywords

Examples

			We can illustrate the terms as the row sums of triangle A245243;
triangle A245243(n,k) = C(n^2 - k^2, n*k - k^2) begins:
1;
1, 1;
1, 3, 1;
1, 28, 10, 1;
1, 455, 495, 35, 1;
1, 10626, 54264, 8008, 126, 1;
1, 324632, 10518300, 4686825, 125970, 462, 1;
1, 12271512, 3190187286, 5586853480, 354817320, 1961256, 1716, 1; ...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n^2-k^2,n*k-k^2],{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Jul 15 2014 *)
  • PARI
    {a(n)=sum(k=0,n,binomial(n^2 - k^2, n*k - k^2))}
    for(n=0,20,print1(a(n),", "))
    
  • PARI
    {a(n)=sum(k=0,n,binomial(n^2,n*k)*binomial(n*k,k^2)/binomial(n^2,k^2))}
    for(n=0,20,print1(a(n),", "))

Formula

a(n) = Sum_{k=0..n} C(n^2, n*k) * C(n*k, k^2) / C(n^2, k^2).
a(n) = Sum_{k=0..n} ((n+k)*(n-k))! / ( (n*(n-k))! * (k*(n-k))! ).
a(n) = Sum_{k=0..n} (n^2 - k^2)! / ( (n^2 - n*k)! * (n*k - k^2)! ).
Limit n->infinity a(n)^(1/n^2) = r^(-(1-r)^2/(2*r)) = 1.65459846190854391888257390278..., where r = 0.37667447497728449846981481128313080857... (see A245259) is the root of the equation r^(2*r-1) = (r+1)^(2*r). - Vaclav Kotesovec, Jul 15 2014

A306206 a(n) = Sum_{k=0..n} (n^2)!/((n^2-n*k)!*n!^k).

Original entry on oeis.org

1, 2, 13, 3445, 127028721, 1249195963773451, 5343245431687763366112193, 14729376926426500067331714992293420777, 36332859343341728199556523379140726537646663631786369
Offset: 0

Views

Author

Seiichi Manyama, Jan 29 2019

Keywords

Crossrefs

Programs

  • PARI
    {a(n) = sum(k=0, n, (n^2)!/((n^2-n*k)!*n!^k))}

Formula

From Vaclav Kotesovec, Jan 29 2019: (Start)
a(n) ~ 2 * (n^2)! / (n!)^n.
a(n) ~ n^(n^2 - n/2 + 1) / (exp(1/12) * 2^((n-3)/2) * Pi^((n-1)/2)). (End)

A306207 a(n) = Sum_{k=0..n} (n^2)!/((n^2-n*k)!*k!^n).

Original entry on oeis.org

1, 2, 19, 9745, 768211081, 17406784944114721, 179762725526880242306609281, 1230064011299573560897489169488350806401, 7660929590740297929124296619236388608530015362840364161
Offset: 0

Views

Author

Seiichi Manyama, Jan 29 2019

Keywords

Crossrefs

Programs

  • PARI
    {a(n) = sum(k=0, n, (n^2)!/((n^2-n*k)!*k!^n))}

Formula

From Vaclav Kotesovec, Jan 29 2019: (Start)
a(n) ~ (n^2)! / (n! * ((n-1)!)^n).
a(n) ~ exp(n - 1/12) * n^(n^2 - n/2 + 1/2) / (2*Pi)^(n/2). (End)
Showing 1-5 of 5 results.