cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A090642 Triangle read by rows: T(n,k) = binomial(n^2, k), 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 4, 6, 1, 9, 36, 84, 1, 16, 120, 560, 1820, 1, 25, 300, 2300, 12650, 53130, 1, 36, 630, 7140, 58905, 376992, 1947792, 1, 49, 1176, 18424, 211876, 1906884, 13983816, 85900584, 1, 64, 2016, 41664, 635376, 7624512, 74974368, 621216192, 4426165368
Offset: 0

Views

Author

Reinhard Zumkeller, Dec 13 2003

Keywords

Comments

A066382(n) = Sum_{k=0..n} T(n,k).

Examples

			Triangle begins:
  1;
  1,  1;
  1,  4,   6;
  1,  9,  36,   84;
  1, 16, 120,  560,  1820;
  1, 25, 300, 2300, 12650,  53130;
  1, 36, 630, 7140, 58905, 376992, 1947792;
  ...
		

Crossrefs

Cf. A007318 (Pascal's triangle), A014062 (right diagonal).

Programs

  • Maple
    for n from 0 to 6 do seq(binomial(n^2,k),k=0..n); od; # Nathaniel Johnston, Jun 24 2011

A206849 a(n) = Sum_{k=0..n} binomial(n^2, k^2).

Original entry on oeis.org

1, 2, 6, 137, 13278, 4098627, 8002879629, 66818063663192, 1520456935214867934, 167021181249536494996841, 102867734705055054467692090431, 179314863425920182637610314008444247, 1094998941099523423274757578750950802034789
Offset: 0

Views

Author

Paul D. Hanna, Feb 15 2012

Keywords

Examples

			L.g.f.: L(x) = 2*x + 6*x^2/2 + 137*x^3/3 + 13278*x^4/4 + 4098627*x^5/5 +...
where exponentiation yields the g.f. of A206848:
exp(L(x)) = 1 + 2*x + 5*x^2 + 53*x^3 + 3422*x^4 + 826606*x^5 + 1335470713*x^6 +...
Illustration of terms: by definition,
a(1) = C(1,0) + C(1,1);
a(2) = C(4,0) + C(4,1) + C(4,4);
a(3) = C(9,0) + C(9,1) + C(9,4) + C(9,9);
a(4) = C(16,0) + C(16,1) + C(16,4) + C(16,9) + C(16,16);
a(5) = C(25,0) + C(25,1) + C(25,4) + C(25,9) + C(25,16) + C(25,25);
a(6) = C(36,0) + C(36,1) + C(36,4) + C(36,9) + C(36,16) + C(36,25) + C(36,36); ...
Numerically, the above evaluates to be:
a(1) = 1 + 1 = 2;
a(2) = 1 + 4 + 1 = 6;
a(3) = 1 + 9 + 126 + 1 = 137;
a(4) = 1 + 16 + 1820 + 11440 + 1 = 13278;
a(5) = 1 + 25 + 12650 + 2042975 + 2042975 + 1 = 4098627;
a(6) = 1 + 36 + 58905 + 94143280 + 7307872110 + 600805296 + 1 = 8002879629; ...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n^2, k^2],{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Mar 03 2014 *)
  • PARI
    {a(n)=sum(k=0, n,binomial(n^2,k^2))}
    for(n=0, 20, print1(a(n), ", "))

Formula

Ignoring the initial term a(0), equals the logarithmic derivative of A206848.
Equals the row sums of triangle A226234.
From Vaclav Kotesovec, Mar 03 2014: (Start)
Limit n->infinity a(n)^(1/n^2) = 2
Lim sup n->infinity a(n)/(2^(n^2)/n) = sqrt(2/Pi) * JacobiTheta3(0,exp(-4)) = Sqrt[2/Pi] * EllipticTheta[3, 0, 1/E^4] = 0.827112271364145742...
Lim inf n->infinity a(n)/(2^(n^2)/n) = sqrt(2/Pi) * JacobiTheta2(0,exp(-4)) = Sqrt[2/Pi] * EllipticTheta[2, 0, 1/E^4] = 0.587247586271786487...
(End)

A007819 a(n) = Sum_{j=1..n} binomial(n^2, j).

Original entry on oeis.org

1, 10, 129, 2516, 68405, 2391495, 102022809, 5130659560, 296881218693, 19415908147835, 1415538531617771, 113796709835547766, 9998149029974754103, 952980844872975079231, 97930011125976327934825
Offset: 1

Views

Author

Joseph Lavinus Ganley (jwl8k(AT)server.cs.Virginia.EDU)

Keywords

Crossrefs

Cf. A066382.

Programs

  • Magma
    [ &+[Binomial(n^2,j): j in [1..n]]: n in [1..20]]; // G. C. Greubel, Mar 06 2020
    
  • Maple
    seq( add(binomial(n^2,j), j=1..n), n=1..20); # G. C. Greubel, Mar 06 2020
  • Mathematica
    Table[Sum[Binomial[n^2,i],{i,n}],{n,20}] (* Harvey P. Dale, Nov 03 2013 *)
  • PARI
    vector(20, n, sum(j=1,n, binomial(n^2,j))) \\ G. C. Greubel, Mar 06 2020
    
  • Sage
    [sum(binomial(n^2,j) for j in (1..n)) for n in (1..20)] # G. C. Greubel, Mar 06 2020

Formula

a(n) = A066382(n) - 1. - Peter Luschny, Mar 06 2020
Showing 1-3 of 3 results.