A209330
Triangle defined by T(n,k) = binomial(n^2, n*k), for n>=0, k=0..n, as read by rows.
Original entry on oeis.org
1, 1, 1, 1, 6, 1, 1, 84, 84, 1, 1, 1820, 12870, 1820, 1, 1, 53130, 3268760, 3268760, 53130, 1, 1, 1947792, 1251677700, 9075135300, 1251677700, 1947792, 1, 1, 85900584, 675248872536, 39049918716424, 39049918716424, 675248872536, 85900584, 1, 1
Offset: 0
The triangle of coefficients C(n^2,n*k), n>=k, k=0..n, begins:
1;
1, 1;
1, 6, 1;
1, 84, 84, 1;
1, 1820, 12870, 1820, 1;
1, 53130, 3268760, 3268760, 53130, 1;
1, 1947792, 1251677700, 9075135300, 1251677700, 1947792, 1;
1, 85900584, 675248872536, 39049918716424, 39049918716424, 675248872536, 85900584, 1; ...
-
Table[Binomial[n^2, n*k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Jan 05 2018 *)
-
{T(n,k)=binomial(n^2,n*k)}
for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
A206850
G.f.: exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n^2, k^2) * x^k ).
Original entry on oeis.org
1, 1, 2, 4, 8, 56, 522, 5972, 424954, 16560881, 1528544877, 483389731955, 70609119680761, 53933819677734187, 58734216507052608587, 38789122414735365076327, 202547156817505166242299130, 712808848212730366850407506134, 2914935606380176735260119042755221
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 8*x^4 + 56*x^5 + 522*x^6 + 5972*x^7 +...
such that, by definition, the logarithm equals the series:
log(A(x)) = x*(1+x) + x^2*(1 + 4*x + x^2)/2
+ x^3*(1 + 9*x + 126*x^2 + x^3)/3
+ x^4*(1 + 16*x + 1820*x^2 + 11440*x^3 + x^4)/4
+ x^5*(1 + 25*x + 12650*x^2 + 2042975*x^3 + 2042975*x^4 + x^5)/5
+ x^6*(1 + 36*x + 58905*x^2 + 94143280*x^3 + 7307872110*x^4 + 600805296*x^5 + x^6)/6
+ x^7*(1 + 49*x + 211876*x^2 + 2054455634*x^3 + 3348108992991*x^4 + 63205303218876*x^5 + 262596783764*x^6 + x^7)/7 +...
+ x^n*(Sum_{k=0..n} binomial(n^2, k^2)*x^k)/n +...
-
{a(n)=polcoeff(exp(sum(m=1, n, sum(k=0, m, binomial(m^2, k^2)*x^k)*x^m/m)+x*O(x^n)), n)}
for(n=0,25,print1(a(n),", "))
A209196
Triangle defined by g.f. A(x,y) = exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n^2, n*k) * y^k ), as read by rows.
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 32, 32, 1, 1, 487, 3282, 487, 1, 1, 11113, 657573, 657573, 11113, 1, 1, 335745, 209282906, 1513844855, 209282906, 335745, 1, 1, 12607257, 96673776804, 5580284351032, 5580284351032, 96673776804, 12607257, 1, 1, 565877928, 61162554558200
Offset: 0
This triangle begins:
1;
1, 1;
1, 4, 1;
1, 32, 32, 1;
1, 487, 3282, 487, 1;
1, 11113, 657573, 657573, 11113, 1;
1, 335745, 209282906, 1513844855, 209282906, 335745, 1;
1, 12607257, 96673776804, 5580284351032, 5580284351032, 96673776804, 12607257, 1;
1, 565877928, 61162554558200, 31336815578461815, 229089181252258800, 31336815578461815, 61162554558200, 565877928, 1; ...
G.f.: A(x,y) = 1 + (1+y)*x + (1+4*y+y^2)*x^2 + (1+32*y+32*y^2+y^3)*x^3 + (1+487*y+3282*y^2+487*y^3+y^4)*x^4 +...
The logarithm of the g.f. equals the series:
log(A(x,y)) = (1 + y)*x
+ (1 + 6*y + y^2)*x^2/2
+ (1 + 84*y + 84*y^2 + y^3)*x^3/3
+ (1 + 1820*y + 12870*y^2 + 1820*y^3 + y^4)*x^4/4
+ (1 + 53130*y + 3268760*y^2 + 3268760*y^3 + 53130*y^4 + y^5)*x^5/5 +...
in which the coefficients form A209330(n,k) = binomial(n^2, n*k).
-
{T(n,k)=polcoeff(polcoeff(exp(sum(m=1,n,x^m/m*sum(j=0,m,binomial(m^2,m*j)*y^j))+x*O(x^n)),n,x),k,y)}
for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
A207135
G.f.: exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n^2, k*(n-k)) ).
Original entry on oeis.org
1, 2, 5, 32, 796, 77508, 26058970, 28765221688, 101824384364586, 1145306676113095172, 40618070255705049577152, 4523562146025746408072408406, 1576501611479138389748204925102907, 1714649258669533421310212170714443813118
Offset: 0
G.f.: A(x) = 1 + 2*x + 5*x^2 + 32*x^3 + 796*x^4 + 77508*x^5 +...
where the logarithm of the g.f. equals the l.g.f. of A207136:
log(A(x)) = 2*x + 6*x^2/2 + 74*x^3/3 + 2942*x^4/4 + 379502*x^5/5 +...
-
{a(n)=polcoeff(exp(sum(m=1,n,x^m/m*sum(k=0,m,binomial(m^2,k*(m-k))))+x*O(x^n)),n)}
for(n=0,20,print1(a(n),", "))
A207137
G.f.: exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n^2, k*(n-k))*x^k ).
Original entry on oeis.org
1, 1, 2, 4, 17, 171, 3171, 101741, 7181615, 1274607729, 428568152553, 223160743256395, 185627109707405932, 320952534083059792786, 1367454166673309618606950, 11078799748881429582280609036, 137939599816546528357634500253053, 2679390013936303204526656964298150849
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 17*x^4 + 171*x^5 + 3171*x^6 +...
where the logarithm of the g.f. equals the l.g.f. of A207138:
log(A(x)) = x + 3*x^2/2 + 7*x^3/3 + 51*x^4/4 + 761*x^5/5 + 17913*x^6/6 +...
-
{a(n)=polcoeff(exp(sum(m=1,n,x^m/m*sum(k=0,m,binomial(m^2,k*(m-k))*x^k))+x*O(x^n)),n)}
for(n=0,25,print1(a(n),", "))
A228905
G.f.: exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n*k, k^2) * x^k ).
Original entry on oeis.org
1, 1, 2, 3, 5, 12, 33, 139, 1251, 10598, 176642, 4720781, 106779821, 5953841083, 373265833332, 23827795512789, 3914313805097976, 548326897932632059, 108647952177920032693, 45931050219457726501030, 14741338951262398648743248, 9489791738688118291360645939
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 12*x^5 + 33*x^6 + 139*x^7 +...
such that, by definition, the logarithm equals (cf. A228832):
log(A(x)) = (1 + x)*x + (1 + 2*x + x^2)*x^2/2 + (1 + 3*x + 15*x^2 + x^3)*x^3/3 + (1 + 4*x + 70*x^2 + 220*x^3 + x^4)*x^4/4 + (1 + 5*x + 210*x^2 + 5005*x^3 + 4845*x^4 + x^5)*x^5/5 +...
More explicitly,
log(A(x)) = x + 3*x^2/2 + 4*x^3/3 + 7*x^4/4 + 31*x^5/5 + 114*x^6/6 + 687*x^7/7 + 8679*x^8/8 + 82948*x^9/9 +...
-
{a(n)=polcoeff(exp(sum(m=1, n, sum(k=0, m, binomial(m*k, k^2)*x^k)*x^m/m)+x*O(x^n)), n)}
for(n=0, 25, print1(a(n), ", "))
A227467
E.g.f.: exp( Sum_{n>=1} (1+x)^(n^2) * x^n/n ).
Original entry on oeis.org
1, 1, 4, 24, 252, 3660, 73560, 1921080, 63411600, 2574406800, 125747475840, 7258472907840, 487590023511360, 37629962101892160, 3299990581104497280, 325758967714868688000, 35904380354917794720000, 4387164775718671231084800, 590610815931660911894707200, 87118296156852814044256665600
Offset: 0
E.g.f.: A(x) = 1 + x + 4*x^2/2! + 24*x^3/3! + 252*x^4/4! + 3660*x^5/5! +...
where, by definition,
log(A(x)) = (1+x)*x + (1+x)^4*x^2/2 + (1+x)^9*x^3/3 + (1+x)^16*x^4/4 + (1+x)^25*x^5/5+ (1+x)^36*x^6/6+ (1+x)^49*x^7/7 +...
-
{a(n)=n!*polcoeff(exp(sum(m=1, n, (1+x)^(m^2)*x^m/m)+x*O(x^n)), n)}
for(n=0,25,print1(a(n),", "))
A227468
G.f.: exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n^3, n^2*k) * x^k ).
Original entry on oeis.org
1, 1, 2, 37, 1562313, 122131737394518, 26010968765974205465787541, 22347536974721066092798325076069521074882, 113454243067016764816945424312979214671918840299656114590507, 897202601035299299315214220213621062686601174611936477408260666612934393100592315294994
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 37*x^3 + 1562313*x^4 + 122131737394518*x^5 + ...
such that the logarithm equals
log(A(x)) = (1+x)*x + (1 + 70*x + x^2)*x^2/2
+ (1 + 4686825*x + 4686825*x^2 + x^3)*x^3/3
+ (1 + 488526937079580*x + 1832624140942590534*x^2 + 488526937079580*x^3 + x^4)*x^/4 + ...
-
{a(n)=polcoeff(exp(sum(m=1, n, sum(k=0, m, binomial(m^3, m^2*k)*x^k)*x^m/m)+x*O(x^n)), n)}
for(n=0, 15, print1(a(n), ", "))
Showing 1-8 of 8 results.
Comments