cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A206830 G.f.: exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n^2, n*k) * x^k ).

Original entry on oeis.org

1, 1, 2, 5, 34, 520, 14397, 993806, 222547738, 98753510701, 66772601607218, 82150206439975648, 310163020349941301606, 3022167582612808506550780, 47176617497043375266215814522, 1129578055293824008530028604347686, 62478430488069985838347598494293429802
Offset: 0

Views

Author

Paul D. Hanna, Feb 12 2012

Keywords

Comments

Note: exp( Sum_{n>=1} x^n/n * Sum_{k=0..n^2} binomial(n^2, k) * x^k ) does not yield an integer series (see A227467).

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 34*x^4 + 520*x^5 + 14397*x^6 + ...
such that, by definition, the logarithm equals:
log(A(x)) = x*(1+x) + x^2*(1 + 6*x + x^2)/2 + x^3*(1 + 84*x + 84*x^2 + x^3)/3 + x^4*(1 + 1820*x + 12870*x^2 + 1820*x^3 + x^4)/4 + x^5*(1 + 53130*x + 3268760*x^2 + 3268760*x^3 + 53130*x^4 + x^5)/5 + ... + x^n/n*Sum_{k=0..n} A209330(n,k)*x^k + ...
More explicitly,
log(A(x)) = x + 3*x^2/2 + 10*x^3/3 + 115*x^4/4 + 2416*x^5/5 + 83064*x^6/6 + ...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n, sum(k=0, m, binomial(m^2, m*k)*x^k)*x^m/m)+x*O(x^n)), n)}
    for(n=0,15,print1(a(n),", "))

A228904 Triangle defined by g.f. A(x,y) = exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n*k, k^2) * y^k ), as read by rows.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 7, 1, 1, 4, 26, 62, 1, 1, 5, 70, 1087, 1031, 1, 1, 6, 155, 9257, 124702, 24782, 1, 1, 7, 301, 51397, 4479983, 26375325, 774180, 1, 1, 8, 532, 215129, 79666708, 5059028293, 8735721640, 29763855, 1, 1, 9, 876, 736410, 891868573, 357346615545, 10783389596184, 4162906254188, 1359654560, 1
Offset: 0

Views

Author

Paul D. Hanna, Sep 07 2013

Keywords

Examples

			This triangle begins:
1;
1, 1;
1, 2, 1;
1, 3, 7, 1;
1, 4, 26, 62, 1;
1, 5, 70, 1087, 1031, 1;
1, 6, 155, 9257, 124702, 24782, 1;
1, 7, 301, 51397, 4479983, 26375325, 774180, 1;
1, 8, 532, 215129, 79666708, 5059028293, 8735721640, 29763855, 1;
1, 9, 876, 736410, 891868573, 357346615545, 10783389596184, 4162906254188, 1359654560, 1;
...
G.f.: A(x,y) = 1 + (1+y)*x + (1+2*y+y^2)*x^2 + (1+3*y+7*y^2+y^3)*x^3 + (1+4*y+26*y^2+62*y^3+y^4)*x^4 + (1+5*y+70*y^2+1087*y^3+1031*y^4+y^5)*x^5 +...
The logarithm of the g.f. equals the series:
log(A(x,y)) = (1 + y)*x
+ (1 + 2*y + y^2)*x^2/2
+ (1 + 3*y + 15*y^2 + y^3)*x^3/3
+ (1 + 4*y + 70*y^2 + 220*y^3 + y^4)*x^4/4
+ (1 + 5*y + 210*y^2 + 5005*y^3 + 4845*y^4 + y^5)*x^5/5
+ (1 + 6*y + 495*y^2 + 48620*y^3 + 735471*y^4 + 142506*y^5 + y^6)*x^6/6 +...
in which the coefficients form A228832(n,k) = binomial(n*k, k^2).
		

Crossrefs

Cf. A228809 (row sums), A228905 (antidiagonal sums), A228906 (diagonal).
Cf. related triangles: A228832 (log), A209196, A228900, A228902.

Programs

  • PARI
    {T(n, k)=polcoeff(polcoeff(exp(sum(m=1, n, x^m/m*sum(j=0, m, binomial(m*j, j^2)*y^j))+x*O(x^n)), n, x), k, y)}
    for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))
Showing 1-2 of 2 results.