cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A206849 a(n) = Sum_{k=0..n} binomial(n^2, k^2).

Original entry on oeis.org

1, 2, 6, 137, 13278, 4098627, 8002879629, 66818063663192, 1520456935214867934, 167021181249536494996841, 102867734705055054467692090431, 179314863425920182637610314008444247, 1094998941099523423274757578750950802034789
Offset: 0

Views

Author

Paul D. Hanna, Feb 15 2012

Keywords

Examples

			L.g.f.: L(x) = 2*x + 6*x^2/2 + 137*x^3/3 + 13278*x^4/4 + 4098627*x^5/5 +...
where exponentiation yields the g.f. of A206848:
exp(L(x)) = 1 + 2*x + 5*x^2 + 53*x^3 + 3422*x^4 + 826606*x^5 + 1335470713*x^6 +...
Illustration of terms: by definition,
a(1) = C(1,0) + C(1,1);
a(2) = C(4,0) + C(4,1) + C(4,4);
a(3) = C(9,0) + C(9,1) + C(9,4) + C(9,9);
a(4) = C(16,0) + C(16,1) + C(16,4) + C(16,9) + C(16,16);
a(5) = C(25,0) + C(25,1) + C(25,4) + C(25,9) + C(25,16) + C(25,25);
a(6) = C(36,0) + C(36,1) + C(36,4) + C(36,9) + C(36,16) + C(36,25) + C(36,36); ...
Numerically, the above evaluates to be:
a(1) = 1 + 1 = 2;
a(2) = 1 + 4 + 1 = 6;
a(3) = 1 + 9 + 126 + 1 = 137;
a(4) = 1 + 16 + 1820 + 11440 + 1 = 13278;
a(5) = 1 + 25 + 12650 + 2042975 + 2042975 + 1 = 4098627;
a(6) = 1 + 36 + 58905 + 94143280 + 7307872110 + 600805296 + 1 = 8002879629; ...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n^2, k^2],{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Mar 03 2014 *)
  • PARI
    {a(n)=sum(k=0, n,binomial(n^2,k^2))}
    for(n=0, 20, print1(a(n), ", "))

Formula

Ignoring the initial term a(0), equals the logarithmic derivative of A206848.
Equals the row sums of triangle A226234.
From Vaclav Kotesovec, Mar 03 2014: (Start)
Limit n->infinity a(n)^(1/n^2) = 2
Lim sup n->infinity a(n)/(2^(n^2)/n) = sqrt(2/Pi) * JacobiTheta3(0,exp(-4)) = Sqrt[2/Pi] * EllipticTheta[3, 0, 1/E^4] = 0.827112271364145742...
Lim inf n->infinity a(n)/(2^(n^2)/n) = sqrt(2/Pi) * JacobiTheta2(0,exp(-4)) = Sqrt[2/Pi] * EllipticTheta[2, 0, 1/E^4] = 0.587247586271786487...
(End)

A206851 L.g.f.: Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n^2, k^2)*x^k = Sum_{n>=1} a(n)*x^n/n.

Original entry on oeis.org

1, 3, 7, 15, 231, 2763, 37773, 3347359, 145164760, 15115517783, 5300285945494, 841490209145991, 700215432847179640, 821522962294608211319, 580955012898669141073842, 3240132942509582109732641935, 12114306457535986210506222037102
Offset: 1

Views

Author

Paul D. Hanna, Feb 15 2012

Keywords

Comments

Equals the logarithmic derivative of A206850.

Examples

			L.g.f.: L(x) = x + 3*x^2/2 + 7*x^3/3 + 15*x^4/4 + 231*x^5/5 + 2763*x^6/6 +...
where exponentiation yields the g.f. of A206850:
exp(L(x)) = 1 + x + 2*x^2 + 4*x^3 + 8*x^4 + 56*x^5 + 522*x^6 + 5972*x^7 +...
By definition, the l.g.f. equals the series:
L(x) = (C(1,0) + C(1,1)*x)*x
+ (C(4,0) + C(4,1)*x + C(4,4)*x^2)*x^2/2
+ (C(9,0) + C(9,1)*x + C(9,4)*x^2 + C(9,9)*x^3)*x^3/3
+ (C(16,0) + C(16,1)*x + C(16,4)*x^2 + C(16,9)*x^3 + C(16,16)*x^4)*x^4/4
+ (C(25,0) + C(25,1)*x + C(25,4)*x^2 + C(25,9)*x^3 + C(25,16)*x^4 + C(25,25)*x^5)*x^5/5 +...
More explicitly,
L(x) = (1 + 1*x)*x + (1 + 4*x + 1*x^2)*x^2/2
+ (1 + 9*x + 126*x^2 + 1*x^3)*x^3/3
+ (1 + 16*x + 1820*x^2 + 11440*x^3 + 1*x^4)*x^4/4
+ (1 + 25*x + 12650*x^2 + 2042975*x^3 + 2042975*x^4 + 1*x^5)*x^5/5
+ (1 + 36*x + 58905*x^2 + 94143280*x^3 + 7307872110*x^4 + 600805296*x^5 + 1*x^6)*x^6/6 +...
		

Crossrefs

Programs

  • Mathematica
    Table[n*Sum[Binomial[(n-k)^2, k^2]/(n-k),{k,0,Floor[n/2]}], {n, 1, 20}] (* Vaclav Kotesovec, Mar 03 2014 *)
  • PARI
    {a(n)=n*polcoeff(sum(m=1,n,x^m/m*sum(k=0,m,binomial(m^2,k^2)*x^k)+x*O(x^n)),n)}
    
  • PARI
    {a(n)=n*sum(k=0,n\2, binomial((n-k)^2, k^2)/(n-k))}
    for(n=1, 20, print1(a(n), ", "))

Formula

a(n) = n * Sum_{k=0..[n/2]} binomial((n-k)^2, k^2)/(n-k).
Limit n->infinity a(n)^(1/n^2) = (1-2*r)^r / r^(2*r) = 1.2915356633069917227119166349..., where r = A323778 = 0.365498498219858044579... is the root of the equation (1-r)^(2-2*r) * r^(2*r) = 1-2*r. - Vaclav Kotesovec, Mar 03 2014

A206848 G.f.: exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n^2, k^2) ).

Original entry on oeis.org

1, 2, 5, 53, 3422, 826606, 1335470713, 9548109569885, 190076214495558260, 18558289189760778318731, 10286810587274357297985552184, 16301371794177939084545371104827679, 91249944361047494534207504939405352235731, 3283593155431496336538359592977826684908598341441
Offset: 0

Views

Author

Paul D. Hanna, Feb 15 2012

Keywords

Comments

Logarithmic derivative yields A206849.
Equals row sums of triangle A228902.

Examples

			G.f.: A(x) = 1 + 2*x + 5*x^2 + 53*x^3 + 3422*x^4 + 826606*x^5 + 1335470713*x^6 +...
where the logarithm of the g.f. yields the l.g.f. of A206849:
log(A(x)) = 2*x + 6*x^2/2 + 137*x^3/3 + 13278*x^4/4 + 4098627*x^5/5 +...
		

Crossrefs

Cf. variants: A167006, A228809.

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n, sum(k=0, m, binomial(m^2,k^2))*x^m/m)+x*O(x^n)), n)}
    for(n=0, 25, print1(a(n), ", "))

A207135 G.f.: exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n^2, k*(n-k)) ).

Original entry on oeis.org

1, 2, 5, 32, 796, 77508, 26058970, 28765221688, 101824384364586, 1145306676113095172, 40618070255705049577152, 4523562146025746408072408406, 1576501611479138389748204925102907, 1714649258669533421310212170714443813118
Offset: 0

Views

Author

Paul D. Hanna, Feb 15 2012

Keywords

Comments

The logarithmic derivative yields A207136.
Equals the row sums of triangle A228900.
Equals the self-convolution of A228852.

Examples

			G.f.: A(x) = 1 + 2*x + 5*x^2 + 32*x^3 + 796*x^4 + 77508*x^5 +...
where the logarithm of the g.f. equals the l.g.f. of A207136:
log(A(x)) = 2*x + 6*x^2/2 + 74*x^3/3 + 2942*x^4/4 + 379502*x^5/5 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n,x^m/m*sum(k=0,m,binomial(m^2,k*(m-k))))+x*O(x^n)),n)}
    for(n=0,20,print1(a(n),", "))

A228902 Triangle defined by g.f. A(x,y) = exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n^2, k^2) * y^k ), as read by rows.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 6, 45, 1, 1, 10, 505, 2905, 1, 1, 15, 3045, 412044, 411500, 1, 1, 21, 12880, 16106168, 1218805926, 100545716, 1, 1, 28, 43176, 309616264, 479536629727, 9030648908720, 37614371968, 1, 1, 36, 122640, 3752248896, 61545730104024, 50139332516318674, 139855355007409180, 19977489354808, 1
Offset: 0

Views

Author

Paul D. Hanna, Sep 07 2013

Keywords

Examples

			This triangle begins:
  1;
  1, 1;
  1, 3, 1;
  1, 6, 45, 1;
  1, 10, 505, 2905, 1;
  1, 15, 3045, 412044, 411500, 1;
  1, 21, 12880, 16106168, 1218805926, 100545716, 1;
  1, 28, 43176, 309616264, 479536629727, 9030648908720, 37614371968, 1;
  1, 36, 122640, 3752248896, 61545730104024, 50139332516318674, 139855355007409180, 19977489354808, 1;
  ...
G.f.: A(x,y) = 1 + (1+y)*x + (1+3*y+y^2)*x^2 + (1+6*y+45*y^2+y^3)*x^3 + (1+10*y+505*y^2+2905*y^3+y^4)*x^4 + (1+15*y+3045*y^2+412044*y^3+411500*y^4+y^5)*x^5 +...
The logarithm of the g.f. equals the series:
log(A(x,y)) = (1 + y)*x
   + (1 + 4*y + y^2)*x^2/2
   + (1 + 9*y + 126*y^2 + y^3)*x^3/3
   + (1 + 16*y + 1820*y^2 + 11440*y^3 + y^4)*x^4/4
   + (1 + 25*y + 12650*y^2 + 2042975*y^3 + 2042975*y^4 + y^5)*x^5/5
   + (1 + 36*y + 58905*y^2 + 94143280*y^3 + 7307872110*y^4 + 600805296*y^5 + y^6)*x^/6
   + ...
in which the coefficients form A226234(n,k) = binomial(n^2, k^2).
		

Crossrefs

Cf. A206848 (row sums), A206850 (antidiagonal sums), A228903 (diagonal).
Cf. related triangles: A226234 (log), A209196, A228900, A228904.

Programs

  • PARI
    {T(n, k)=polcoeff(polcoeff(exp(sum(m=1, n, x^m/m*sum(j=0, m, binomial(m^2, j^2)*y^j))+x*O(x^n)), n, x), k, y)}
    for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))

A207137 G.f.: exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n^2, k*(n-k))*x^k ).

Original entry on oeis.org

1, 1, 2, 4, 17, 171, 3171, 101741, 7181615, 1274607729, 428568152553, 223160743256395, 185627109707405932, 320952534083059792786, 1367454166673309618606950, 11078799748881429582280609036, 137939599816546528357634500253053, 2679390013936303204526656964298150849
Offset: 0

Views

Author

Paul D. Hanna, Feb 15 2012

Keywords

Comments

The logarithmic derivative yields A207138.
Equals the antidiagonal sums of triangle A228900.

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 17*x^4 + 171*x^5 + 3171*x^6 +...
where the logarithm of the g.f. equals the l.g.f. of A207138:
log(A(x)) = x + 3*x^2/2 + 7*x^3/3 + 51*x^4/4 + 761*x^5/5 + 17913*x^6/6 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n,x^m/m*sum(k=0,m,binomial(m^2,k*(m-k))*x^k))+x*O(x^n)),n)}
    for(n=0,25,print1(a(n),", "))

A228905 G.f.: exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n*k, k^2) * x^k ).

Original entry on oeis.org

1, 1, 2, 3, 5, 12, 33, 139, 1251, 10598, 176642, 4720781, 106779821, 5953841083, 373265833332, 23827795512789, 3914313805097976, 548326897932632059, 108647952177920032693, 45931050219457726501030, 14741338951262398648743248, 9489791738688118291360645939
Offset: 0

Views

Author

Paul D. Hanna, Sep 07 2013

Keywords

Comments

Equals the antidiagonal sums of triangle A228904.

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 12*x^5 + 33*x^6 + 139*x^7 +...
such that, by definition, the logarithm equals (cf. A228832):
log(A(x)) = (1 + x)*x + (1 + 2*x + x^2)*x^2/2 + (1 + 3*x + 15*x^2 + x^3)*x^3/3 + (1 + 4*x + 70*x^2 + 220*x^3 + x^4)*x^4/4 + (1 + 5*x + 210*x^2 + 5005*x^3 + 4845*x^4 + x^5)*x^5/5 +...
More explicitly,
log(A(x)) = x + 3*x^2/2 + 4*x^3/3 + 7*x^4/4 + 31*x^5/5 + 114*x^6/6 + 687*x^7/7 + 8679*x^8/8 + 82948*x^9/9 +...
		

Crossrefs

Cf. variants: A206850, A207137, A206830.

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n, sum(k=0, m, binomial(m*k, k^2)*x^k)*x^m/m)+x*O(x^n)), n)}
    for(n=0, 25, print1(a(n), ", "))

A206846 G.f.: exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n^2,k^2) * binomial(n^2,(n-k)^2) ).

Original entry on oeis.org

1, 2, 11, 776, 921193, 10359730908, 1620677532919905, 1969126979596399128130, 32593711828578589304123599877, 3931730912701446701027876250509820962, 6413805618092047206104426809813307222469463650, 74040826359052943559114050244071546075856822107307951070
Offset: 0

Views

Author

Paul D. Hanna, Feb 15 2012

Keywords

Comments

Logarithmic derivative yields A206847.

Examples

			G.f.: A(x) = 1 + 2*x + 11*x^2 + 776*x^3 + 921193*x^4 + 10359730908*x^5 +...
where the logarithm of the g.f. yields the l.g.f. of A206847:
log(A(x)) = 2*x + 18*x^2/2 + 2270*x^3/3 + 3678482*x^4/4 + 51789416252*x^5/5 +...
		

Crossrefs

Cf. A206847 (log), A206848, A206850.

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n, sum(k=0, m, binomial(m^2,k^2)*binomial(m^2,(m-k)^2))*x^m/m)+x*O(x^n)), n)}
    for(n=0, 25, print1(a(n), ", "))

A207139 G.f.: exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n,k) * binomial(n^2,k^2) ).

Original entry on oeis.org

1, 2, 7, 147, 14481, 6183605, 19196862399, 206667738393577, 6727813723143519624, 1368162090055314881480420, 1237384559488983889303951699285, 3014186760620644058660289396656407831, 34123084437870355957570087446546456971276065
Offset: 0

Views

Author

Paul D. Hanna, Feb 15 2012

Keywords

Comments

The logarithmic derivative yields A207140.

Examples

			G.f.: A(x) = 1 + 2*x + 7*x^2 + 147*x^3 + 14481*x^4 + 6183605*x^5 +...
where the logarithm of the g.f. equals the l.g.f. of A207140:
log(A(x)) = x + 2*x^2/2 + 10*x^3/3 + 407*x^4/4 + 56746*x^5/5 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n+1,x^m/m*sum(k=0,m,binomial(m,k)*binomial(m^2,k^2))+x*O(x^n))),n)}
    for(n=0,16,print1(a(n),", "))
Showing 1-9 of 9 results.