A206849
a(n) = Sum_{k=0..n} binomial(n^2, k^2).
Original entry on oeis.org
1, 2, 6, 137, 13278, 4098627, 8002879629, 66818063663192, 1520456935214867934, 167021181249536494996841, 102867734705055054467692090431, 179314863425920182637610314008444247, 1094998941099523423274757578750950802034789
Offset: 0
L.g.f.: L(x) = 2*x + 6*x^2/2 + 137*x^3/3 + 13278*x^4/4 + 4098627*x^5/5 +...
where exponentiation yields the g.f. of A206848:
exp(L(x)) = 1 + 2*x + 5*x^2 + 53*x^3 + 3422*x^4 + 826606*x^5 + 1335470713*x^6 +...
Illustration of terms: by definition,
a(1) = C(1,0) + C(1,1);
a(2) = C(4,0) + C(4,1) + C(4,4);
a(3) = C(9,0) + C(9,1) + C(9,4) + C(9,9);
a(4) = C(16,0) + C(16,1) + C(16,4) + C(16,9) + C(16,16);
a(5) = C(25,0) + C(25,1) + C(25,4) + C(25,9) + C(25,16) + C(25,25);
a(6) = C(36,0) + C(36,1) + C(36,4) + C(36,9) + C(36,16) + C(36,25) + C(36,36); ...
Numerically, the above evaluates to be:
a(1) = 1 + 1 = 2;
a(2) = 1 + 4 + 1 = 6;
a(3) = 1 + 9 + 126 + 1 = 137;
a(4) = 1 + 16 + 1820 + 11440 + 1 = 13278;
a(5) = 1 + 25 + 12650 + 2042975 + 2042975 + 1 = 4098627;
a(6) = 1 + 36 + 58905 + 94143280 + 7307872110 + 600805296 + 1 = 8002879629; ...
-
Table[Sum[Binomial[n^2, k^2],{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Mar 03 2014 *)
-
{a(n)=sum(k=0, n,binomial(n^2,k^2))}
for(n=0, 20, print1(a(n), ", "))
A206851
L.g.f.: Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n^2, k^2)*x^k = Sum_{n>=1} a(n)*x^n/n.
Original entry on oeis.org
1, 3, 7, 15, 231, 2763, 37773, 3347359, 145164760, 15115517783, 5300285945494, 841490209145991, 700215432847179640, 821522962294608211319, 580955012898669141073842, 3240132942509582109732641935, 12114306457535986210506222037102
Offset: 1
L.g.f.: L(x) = x + 3*x^2/2 + 7*x^3/3 + 15*x^4/4 + 231*x^5/5 + 2763*x^6/6 +...
where exponentiation yields the g.f. of A206850:
exp(L(x)) = 1 + x + 2*x^2 + 4*x^3 + 8*x^4 + 56*x^5 + 522*x^6 + 5972*x^7 +...
By definition, the l.g.f. equals the series:
L(x) = (C(1,0) + C(1,1)*x)*x
+ (C(4,0) + C(4,1)*x + C(4,4)*x^2)*x^2/2
+ (C(9,0) + C(9,1)*x + C(9,4)*x^2 + C(9,9)*x^3)*x^3/3
+ (C(16,0) + C(16,1)*x + C(16,4)*x^2 + C(16,9)*x^3 + C(16,16)*x^4)*x^4/4
+ (C(25,0) + C(25,1)*x + C(25,4)*x^2 + C(25,9)*x^3 + C(25,16)*x^4 + C(25,25)*x^5)*x^5/5 +...
More explicitly,
L(x) = (1 + 1*x)*x + (1 + 4*x + 1*x^2)*x^2/2
+ (1 + 9*x + 126*x^2 + 1*x^3)*x^3/3
+ (1 + 16*x + 1820*x^2 + 11440*x^3 + 1*x^4)*x^4/4
+ (1 + 25*x + 12650*x^2 + 2042975*x^3 + 2042975*x^4 + 1*x^5)*x^5/5
+ (1 + 36*x + 58905*x^2 + 94143280*x^3 + 7307872110*x^4 + 600805296*x^5 + 1*x^6)*x^6/6 +...
-
Table[n*Sum[Binomial[(n-k)^2, k^2]/(n-k),{k,0,Floor[n/2]}], {n, 1, 20}] (* Vaclav Kotesovec, Mar 03 2014 *)
-
{a(n)=n*polcoeff(sum(m=1,n,x^m/m*sum(k=0,m,binomial(m^2,k^2)*x^k)+x*O(x^n)),n)}
-
{a(n)=n*sum(k=0,n\2, binomial((n-k)^2, k^2)/(n-k))}
for(n=1, 20, print1(a(n), ", "))
A206848
G.f.: exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n^2, k^2) ).
Original entry on oeis.org
1, 2, 5, 53, 3422, 826606, 1335470713, 9548109569885, 190076214495558260, 18558289189760778318731, 10286810587274357297985552184, 16301371794177939084545371104827679, 91249944361047494534207504939405352235731, 3283593155431496336538359592977826684908598341441
Offset: 0
G.f.: A(x) = 1 + 2*x + 5*x^2 + 53*x^3 + 3422*x^4 + 826606*x^5 + 1335470713*x^6 +...
where the logarithm of the g.f. yields the l.g.f. of A206849:
log(A(x)) = 2*x + 6*x^2/2 + 137*x^3/3 + 13278*x^4/4 + 4098627*x^5/5 +...
-
{a(n)=polcoeff(exp(sum(m=1, n, sum(k=0, m, binomial(m^2,k^2))*x^m/m)+x*O(x^n)), n)}
for(n=0, 25, print1(a(n), ", "))
A207135
G.f.: exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n^2, k*(n-k)) ).
Original entry on oeis.org
1, 2, 5, 32, 796, 77508, 26058970, 28765221688, 101824384364586, 1145306676113095172, 40618070255705049577152, 4523562146025746408072408406, 1576501611479138389748204925102907, 1714649258669533421310212170714443813118
Offset: 0
G.f.: A(x) = 1 + 2*x + 5*x^2 + 32*x^3 + 796*x^4 + 77508*x^5 +...
where the logarithm of the g.f. equals the l.g.f. of A207136:
log(A(x)) = 2*x + 6*x^2/2 + 74*x^3/3 + 2942*x^4/4 + 379502*x^5/5 +...
-
{a(n)=polcoeff(exp(sum(m=1,n,x^m/m*sum(k=0,m,binomial(m^2,k*(m-k))))+x*O(x^n)),n)}
for(n=0,20,print1(a(n),", "))
A228902
Triangle defined by g.f. A(x,y) = exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n^2, k^2) * y^k ), as read by rows.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 6, 45, 1, 1, 10, 505, 2905, 1, 1, 15, 3045, 412044, 411500, 1, 1, 21, 12880, 16106168, 1218805926, 100545716, 1, 1, 28, 43176, 309616264, 479536629727, 9030648908720, 37614371968, 1, 1, 36, 122640, 3752248896, 61545730104024, 50139332516318674, 139855355007409180, 19977489354808, 1
Offset: 0
This triangle begins:
1;
1, 1;
1, 3, 1;
1, 6, 45, 1;
1, 10, 505, 2905, 1;
1, 15, 3045, 412044, 411500, 1;
1, 21, 12880, 16106168, 1218805926, 100545716, 1;
1, 28, 43176, 309616264, 479536629727, 9030648908720, 37614371968, 1;
1, 36, 122640, 3752248896, 61545730104024, 50139332516318674, 139855355007409180, 19977489354808, 1;
...
G.f.: A(x,y) = 1 + (1+y)*x + (1+3*y+y^2)*x^2 + (1+6*y+45*y^2+y^3)*x^3 + (1+10*y+505*y^2+2905*y^3+y^4)*x^4 + (1+15*y+3045*y^2+412044*y^3+411500*y^4+y^5)*x^5 +...
The logarithm of the g.f. equals the series:
log(A(x,y)) = (1 + y)*x
+ (1 + 4*y + y^2)*x^2/2
+ (1 + 9*y + 126*y^2 + y^3)*x^3/3
+ (1 + 16*y + 1820*y^2 + 11440*y^3 + y^4)*x^4/4
+ (1 + 25*y + 12650*y^2 + 2042975*y^3 + 2042975*y^4 + y^5)*x^5/5
+ (1 + 36*y + 58905*y^2 + 94143280*y^3 + 7307872110*y^4 + 600805296*y^5 + y^6)*x^/6
+ ...
in which the coefficients form A226234(n,k) = binomial(n^2, k^2).
-
{T(n, k)=polcoeff(polcoeff(exp(sum(m=1, n, x^m/m*sum(j=0, m, binomial(m^2, j^2)*y^j))+x*O(x^n)), n, x), k, y)}
for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))
A207137
G.f.: exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n^2, k*(n-k))*x^k ).
Original entry on oeis.org
1, 1, 2, 4, 17, 171, 3171, 101741, 7181615, 1274607729, 428568152553, 223160743256395, 185627109707405932, 320952534083059792786, 1367454166673309618606950, 11078799748881429582280609036, 137939599816546528357634500253053, 2679390013936303204526656964298150849
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 17*x^4 + 171*x^5 + 3171*x^6 +...
where the logarithm of the g.f. equals the l.g.f. of A207138:
log(A(x)) = x + 3*x^2/2 + 7*x^3/3 + 51*x^4/4 + 761*x^5/5 + 17913*x^6/6 +...
-
{a(n)=polcoeff(exp(sum(m=1,n,x^m/m*sum(k=0,m,binomial(m^2,k*(m-k))*x^k))+x*O(x^n)),n)}
for(n=0,25,print1(a(n),", "))
A228905
G.f.: exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n*k, k^2) * x^k ).
Original entry on oeis.org
1, 1, 2, 3, 5, 12, 33, 139, 1251, 10598, 176642, 4720781, 106779821, 5953841083, 373265833332, 23827795512789, 3914313805097976, 548326897932632059, 108647952177920032693, 45931050219457726501030, 14741338951262398648743248, 9489791738688118291360645939
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 12*x^5 + 33*x^6 + 139*x^7 +...
such that, by definition, the logarithm equals (cf. A228832):
log(A(x)) = (1 + x)*x + (1 + 2*x + x^2)*x^2/2 + (1 + 3*x + 15*x^2 + x^3)*x^3/3 + (1 + 4*x + 70*x^2 + 220*x^3 + x^4)*x^4/4 + (1 + 5*x + 210*x^2 + 5005*x^3 + 4845*x^4 + x^5)*x^5/5 +...
More explicitly,
log(A(x)) = x + 3*x^2/2 + 4*x^3/3 + 7*x^4/4 + 31*x^5/5 + 114*x^6/6 + 687*x^7/7 + 8679*x^8/8 + 82948*x^9/9 +...
-
{a(n)=polcoeff(exp(sum(m=1, n, sum(k=0, m, binomial(m*k, k^2)*x^k)*x^m/m)+x*O(x^n)), n)}
for(n=0, 25, print1(a(n), ", "))
A206846
G.f.: exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n^2,k^2) * binomial(n^2,(n-k)^2) ).
Original entry on oeis.org
1, 2, 11, 776, 921193, 10359730908, 1620677532919905, 1969126979596399128130, 32593711828578589304123599877, 3931730912701446701027876250509820962, 6413805618092047206104426809813307222469463650, 74040826359052943559114050244071546075856822107307951070
Offset: 0
G.f.: A(x) = 1 + 2*x + 11*x^2 + 776*x^3 + 921193*x^4 + 10359730908*x^5 +...
where the logarithm of the g.f. yields the l.g.f. of A206847:
log(A(x)) = 2*x + 18*x^2/2 + 2270*x^3/3 + 3678482*x^4/4 + 51789416252*x^5/5 +...
-
{a(n)=polcoeff(exp(sum(m=1, n, sum(k=0, m, binomial(m^2,k^2)*binomial(m^2,(m-k)^2))*x^m/m)+x*O(x^n)), n)}
for(n=0, 25, print1(a(n), ", "))
A207139
G.f.: exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n,k) * binomial(n^2,k^2) ).
Original entry on oeis.org
1, 2, 7, 147, 14481, 6183605, 19196862399, 206667738393577, 6727813723143519624, 1368162090055314881480420, 1237384559488983889303951699285, 3014186760620644058660289396656407831, 34123084437870355957570087446546456971276065
Offset: 0
G.f.: A(x) = 1 + 2*x + 7*x^2 + 147*x^3 + 14481*x^4 + 6183605*x^5 +...
where the logarithm of the g.f. equals the l.g.f. of A207140:
log(A(x)) = x + 2*x^2/2 + 10*x^3/3 + 407*x^4/4 + 56746*x^5/5 +...
-
{a(n)=polcoeff(exp(sum(m=1,n+1,x^m/m*sum(k=0,m,binomial(m,k)*binomial(m^2,k^2))+x*O(x^n))),n)}
for(n=0,16,print1(a(n),", "))
Showing 1-9 of 9 results.
Comments