cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A206830 G.f.: exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n^2, n*k) * x^k ).

Original entry on oeis.org

1, 1, 2, 5, 34, 520, 14397, 993806, 222547738, 98753510701, 66772601607218, 82150206439975648, 310163020349941301606, 3022167582612808506550780, 47176617497043375266215814522, 1129578055293824008530028604347686, 62478430488069985838347598494293429802
Offset: 0

Views

Author

Paul D. Hanna, Feb 12 2012

Keywords

Comments

Note: exp( Sum_{n>=1} x^n/n * Sum_{k=0..n^2} binomial(n^2, k) * x^k ) does not yield an integer series (see A227467).

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 34*x^4 + 520*x^5 + 14397*x^6 + ...
such that, by definition, the logarithm equals:
log(A(x)) = x*(1+x) + x^2*(1 + 6*x + x^2)/2 + x^3*(1 + 84*x + 84*x^2 + x^3)/3 + x^4*(1 + 1820*x + 12870*x^2 + 1820*x^3 + x^4)/4 + x^5*(1 + 53130*x + 3268760*x^2 + 3268760*x^3 + 53130*x^4 + x^5)/5 + ... + x^n/n*Sum_{k=0..n} A209330(n,k)*x^k + ...
More explicitly,
log(A(x)) = x + 3*x^2/2 + 10*x^3/3 + 115*x^4/4 + 2416*x^5/5 + 83064*x^6/6 + ...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n, sum(k=0, m, binomial(m^2, m*k)*x^k)*x^m/m)+x*O(x^n)), n)}
    for(n=0,15,print1(a(n),", "))

A228900 Triangle defined by g.f. A(x,y) = exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n^2, (n-k)*k) * y^k ), as read by rows.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 15, 15, 1, 1, 155, 484, 155, 1, 1, 2685, 36068, 36068, 2685, 1, 1, 65517, 5082340, 15763254, 5082340, 65517, 1, 1, 2063205, 1179126560, 13201421078, 13201421078, 1179126560, 2063205, 1, 1, 79715229, 411708127954, 19954261054442, 61092286569334, 19954261054442, 411708127954, 79715229, 1
Offset: 0

Views

Author

Paul D. Hanna, Sep 07 2013

Keywords

Examples

			This triangle begins:
1;
1, 1;
1, 3, 1;
1, 15, 15, 1;
1, 155, 484, 155, 1;
1, 2685, 36068, 36068, 2685, 1;
1, 65517, 5082340, 15763254, 5082340, 65517, 1;
1, 2063205, 1179126560, 13201421078, 13201421078, 1179126560, 2063205, 1;
1, 79715229, 411708127954, 19954261054442, 61092286569334, 19954261054442, 411708127954, 79715229, 1;
...
G.f.: A(x,y) = 1 + (1+y)*x + (1+3*y+y^2)*x^2 + (1+15*y+15*y^2+y^3)*x^3 + (1+155*y+484*y^2+155*y^3+y^4)*x^4 + (1+2685*y+36068*y^2+36068*y^3+2685*y^4+y^5)*x^5 +...
The logarithm of the g.f. equals the series:
log(A(x,y)) = (1 + y)*x
+ (1 + 4*y + y^2)*x^2/2
+ (1 + 36*y + 36*y^2 + y^3)*x^3/3
+ (1 + 560*y + 1820*y^2 + 560*y^3 + y^4)*x^4/4
+ (1 + 12650*y + 177100*y^2 + 177100*y^3 + 12650*y^4 + y^5)*x^5/5
+ (1 + 376992*y + 30260340*y^2 + 94143280*y^3 + 30260340*y^4 + 376992*y^5 + y^6)*x^6/6 +...
in which the coefficients form A228836(n,k) = binomial(n^2, (n-k)*k).
		

Crossrefs

Cf. A207135 (row sums), A207137 (antidiagonal sums), A228901 (column 1).
Cf. related triangles: A228836 (log), A209196, A228902, A228904.

Programs

  • PARI
    {T(n, k)=polcoeff(polcoeff(exp(sum(m=1, n, x^m/m*sum(j=0, m, binomial(m^2, (m-j)*j)*y^j))+x*O(x^n)), n, x), k, y)}
    for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))

A207138 L.g.f.: Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n^2, k*(n-k))*x^k = Sum_{n>=1} a(n)*x^n/n.

Original entry on oeis.org

1, 3, 7, 51, 761, 17913, 688745, 56611987, 11405877739, 4272862207703, 2450039810788461, 2224842228379519641, 4169966883810355864393, 19139862395982576668262825, 166161479603614500915921996017, 2206856314384330228779059994929555
Offset: 1

Views

Author

Paul D. Hanna, Feb 15 2012

Keywords

Comments

Equals the logarithmic derivative of A207137.

Examples

			L.g.f.: L(x) =  x + 3*x^2/2 + 7*x^3/3 + 51*x^4/4 + 761*x^5/5 + 17913*x^6/6 +...
where exponentiation equals the g.f. of A207137:
exp(L(x)) = 1 + x + 2*x^2 + 4*x^3 + 17*x^4 + 171*x^5 + 3171*x^6 +...
To illustrate the definition, the l.g.f. equals the series:
L(x) = (1 + x)*x + (1 + 4*x + 1*x^2)*x^2/2
+ (1 + 36*x + 36*x^2 + 1*x^3)*x^3/3
+ (1 + 560*x + 1820*x^2 + 560*x^3 + 1*x^4)*x^4/4
+ (1 + 12650*x + 177100*x^2 + 177100*x^3 + 12650*x^4 + 1*x^5)*x^5/5
+ (1 + 376992*x + 30260340*x^2 + 94143280*x^3 + 30260340*x^4 + 376992*x^5 + 1*x^6)*x^6/6 +...
		

Crossrefs

Programs

  • Mathematica
    Table[n*Sum[Binomial[(n-k)^2, k*(n-2*k)]/(n-k),{k,0,Floor[n/2]}],{n,1,20}] (* Vaclav Kotesovec, Mar 04 2014 *)
  • PARI
    {a(n)=n*polcoeff(sum(m=1,n+1,x^m/m*sum(k=0,m,binomial(m^2, k*(m-k))*x^k))+x*O(x^n),n)}
    
  • PARI
    {a(n)=n*sum(k=0,n\2,binomial((n-k)^2,k*(n-2*k))/(n-k))}
    for(n=1,20,print1(a(n),", "))

Formula

a(n) = n*Sum_{k=0..[n/2]} binomial((n-k)^2, k*(n-2*k))/(n-k).
Limit n->infinity a(n)^(1/n^2) = ((1-r)^2/(r*(1-2*r)))^((1-3*r)*(1-r)/(3*(1-2*r))) = 1.36198508972775011599..., where r = 0.195220321930105755... is the root of the equation (1-3*r+3*r^2)^(3*(2*r-1)) = (r*(1-2*r))^(4*r-1) * (1-r)^(4*(r-1)). - Vaclav Kotesovec, Mar 04 2014

A228905 G.f.: exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n*k, k^2) * x^k ).

Original entry on oeis.org

1, 1, 2, 3, 5, 12, 33, 139, 1251, 10598, 176642, 4720781, 106779821, 5953841083, 373265833332, 23827795512789, 3914313805097976, 548326897932632059, 108647952177920032693, 45931050219457726501030, 14741338951262398648743248, 9489791738688118291360645939
Offset: 0

Views

Author

Paul D. Hanna, Sep 07 2013

Keywords

Comments

Equals the antidiagonal sums of triangle A228904.

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 12*x^5 + 33*x^6 + 139*x^7 +...
such that, by definition, the logarithm equals (cf. A228832):
log(A(x)) = (1 + x)*x + (1 + 2*x + x^2)*x^2/2 + (1 + 3*x + 15*x^2 + x^3)*x^3/3 + (1 + 4*x + 70*x^2 + 220*x^3 + x^4)*x^4/4 + (1 + 5*x + 210*x^2 + 5005*x^3 + 4845*x^4 + x^5)*x^5/5 +...
More explicitly,
log(A(x)) = x + 3*x^2/2 + 4*x^3/3 + 7*x^4/4 + 31*x^5/5 + 114*x^6/6 + 687*x^7/7 + 8679*x^8/8 + 82948*x^9/9 +...
		

Crossrefs

Cf. variants: A206850, A207137, A206830.

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n, sum(k=0, m, binomial(m*k, k^2)*x^k)*x^m/m)+x*O(x^n)), n)}
    for(n=0, 25, print1(a(n), ", "))

A207139 G.f.: exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n,k) * binomial(n^2,k^2) ).

Original entry on oeis.org

1, 2, 7, 147, 14481, 6183605, 19196862399, 206667738393577, 6727813723143519624, 1368162090055314881480420, 1237384559488983889303951699285, 3014186760620644058660289396656407831, 34123084437870355957570087446546456971276065
Offset: 0

Views

Author

Paul D. Hanna, Feb 15 2012

Keywords

Comments

The logarithmic derivative yields A207140.

Examples

			G.f.: A(x) = 1 + 2*x + 7*x^2 + 147*x^3 + 14481*x^4 + 6183605*x^5 +...
where the logarithm of the g.f. equals the l.g.f. of A207140:
log(A(x)) = x + 2*x^2/2 + 10*x^3/3 + 407*x^4/4 + 56746*x^5/5 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n+1,x^m/m*sum(k=0,m,binomial(m,k)*binomial(m^2,k^2))+x*O(x^n))),n)}
    for(n=0,16,print1(a(n),", "))
Showing 1-5 of 5 results.