A206830
G.f.: exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n^2, n*k) * x^k ).
Original entry on oeis.org
1, 1, 2, 5, 34, 520, 14397, 993806, 222547738, 98753510701, 66772601607218, 82150206439975648, 310163020349941301606, 3022167582612808506550780, 47176617497043375266215814522, 1129578055293824008530028604347686, 62478430488069985838347598494293429802
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 34*x^4 + 520*x^5 + 14397*x^6 + ...
such that, by definition, the logarithm equals:
log(A(x)) = x*(1+x) + x^2*(1 + 6*x + x^2)/2 + x^3*(1 + 84*x + 84*x^2 + x^3)/3 + x^4*(1 + 1820*x + 12870*x^2 + 1820*x^3 + x^4)/4 + x^5*(1 + 53130*x + 3268760*x^2 + 3268760*x^3 + 53130*x^4 + x^5)/5 + ... + x^n/n*Sum_{k=0..n} A209330(n,k)*x^k + ...
More explicitly,
log(A(x)) = x + 3*x^2/2 + 10*x^3/3 + 115*x^4/4 + 2416*x^5/5 + 83064*x^6/6 + ...
-
{a(n)=polcoeff(exp(sum(m=1, n, sum(k=0, m, binomial(m^2, m*k)*x^k)*x^m/m)+x*O(x^n)), n)}
for(n=0,15,print1(a(n),", "))
A228900
Triangle defined by g.f. A(x,y) = exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n^2, (n-k)*k) * y^k ), as read by rows.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 15, 15, 1, 1, 155, 484, 155, 1, 1, 2685, 36068, 36068, 2685, 1, 1, 65517, 5082340, 15763254, 5082340, 65517, 1, 1, 2063205, 1179126560, 13201421078, 13201421078, 1179126560, 2063205, 1, 1, 79715229, 411708127954, 19954261054442, 61092286569334, 19954261054442, 411708127954, 79715229, 1
Offset: 0
This triangle begins:
1;
1, 1;
1, 3, 1;
1, 15, 15, 1;
1, 155, 484, 155, 1;
1, 2685, 36068, 36068, 2685, 1;
1, 65517, 5082340, 15763254, 5082340, 65517, 1;
1, 2063205, 1179126560, 13201421078, 13201421078, 1179126560, 2063205, 1;
1, 79715229, 411708127954, 19954261054442, 61092286569334, 19954261054442, 411708127954, 79715229, 1;
...
G.f.: A(x,y) = 1 + (1+y)*x + (1+3*y+y^2)*x^2 + (1+15*y+15*y^2+y^3)*x^3 + (1+155*y+484*y^2+155*y^3+y^4)*x^4 + (1+2685*y+36068*y^2+36068*y^3+2685*y^4+y^5)*x^5 +...
The logarithm of the g.f. equals the series:
log(A(x,y)) = (1 + y)*x
+ (1 + 4*y + y^2)*x^2/2
+ (1 + 36*y + 36*y^2 + y^3)*x^3/3
+ (1 + 560*y + 1820*y^2 + 560*y^3 + y^4)*x^4/4
+ (1 + 12650*y + 177100*y^2 + 177100*y^3 + 12650*y^4 + y^5)*x^5/5
+ (1 + 376992*y + 30260340*y^2 + 94143280*y^3 + 30260340*y^4 + 376992*y^5 + y^6)*x^6/6 +...
in which the coefficients form A228836(n,k) = binomial(n^2, (n-k)*k).
-
{T(n, k)=polcoeff(polcoeff(exp(sum(m=1, n, x^m/m*sum(j=0, m, binomial(m^2, (m-j)*j)*y^j))+x*O(x^n)), n, x), k, y)}
for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))
A207138
L.g.f.: Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n^2, k*(n-k))*x^k = Sum_{n>=1} a(n)*x^n/n.
Original entry on oeis.org
1, 3, 7, 51, 761, 17913, 688745, 56611987, 11405877739, 4272862207703, 2450039810788461, 2224842228379519641, 4169966883810355864393, 19139862395982576668262825, 166161479603614500915921996017, 2206856314384330228779059994929555
Offset: 1
L.g.f.: L(x) = x + 3*x^2/2 + 7*x^3/3 + 51*x^4/4 + 761*x^5/5 + 17913*x^6/6 +...
where exponentiation equals the g.f. of A207137:
exp(L(x)) = 1 + x + 2*x^2 + 4*x^3 + 17*x^4 + 171*x^5 + 3171*x^6 +...
To illustrate the definition, the l.g.f. equals the series:
L(x) = (1 + x)*x + (1 + 4*x + 1*x^2)*x^2/2
+ (1 + 36*x + 36*x^2 + 1*x^3)*x^3/3
+ (1 + 560*x + 1820*x^2 + 560*x^3 + 1*x^4)*x^4/4
+ (1 + 12650*x + 177100*x^2 + 177100*x^3 + 12650*x^4 + 1*x^5)*x^5/5
+ (1 + 376992*x + 30260340*x^2 + 94143280*x^3 + 30260340*x^4 + 376992*x^5 + 1*x^6)*x^6/6 +...
-
Table[n*Sum[Binomial[(n-k)^2, k*(n-2*k)]/(n-k),{k,0,Floor[n/2]}],{n,1,20}] (* Vaclav Kotesovec, Mar 04 2014 *)
-
{a(n)=n*polcoeff(sum(m=1,n+1,x^m/m*sum(k=0,m,binomial(m^2, k*(m-k))*x^k))+x*O(x^n),n)}
-
{a(n)=n*sum(k=0,n\2,binomial((n-k)^2,k*(n-2*k))/(n-k))}
for(n=1,20,print1(a(n),", "))
A228905
G.f.: exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n*k, k^2) * x^k ).
Original entry on oeis.org
1, 1, 2, 3, 5, 12, 33, 139, 1251, 10598, 176642, 4720781, 106779821, 5953841083, 373265833332, 23827795512789, 3914313805097976, 548326897932632059, 108647952177920032693, 45931050219457726501030, 14741338951262398648743248, 9489791738688118291360645939
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 12*x^5 + 33*x^6 + 139*x^7 +...
such that, by definition, the logarithm equals (cf. A228832):
log(A(x)) = (1 + x)*x + (1 + 2*x + x^2)*x^2/2 + (1 + 3*x + 15*x^2 + x^3)*x^3/3 + (1 + 4*x + 70*x^2 + 220*x^3 + x^4)*x^4/4 + (1 + 5*x + 210*x^2 + 5005*x^3 + 4845*x^4 + x^5)*x^5/5 +...
More explicitly,
log(A(x)) = x + 3*x^2/2 + 4*x^3/3 + 7*x^4/4 + 31*x^5/5 + 114*x^6/6 + 687*x^7/7 + 8679*x^8/8 + 82948*x^9/9 +...
-
{a(n)=polcoeff(exp(sum(m=1, n, sum(k=0, m, binomial(m*k, k^2)*x^k)*x^m/m)+x*O(x^n)), n)}
for(n=0, 25, print1(a(n), ", "))
A207139
G.f.: exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n,k) * binomial(n^2,k^2) ).
Original entry on oeis.org
1, 2, 7, 147, 14481, 6183605, 19196862399, 206667738393577, 6727813723143519624, 1368162090055314881480420, 1237384559488983889303951699285, 3014186760620644058660289396656407831, 34123084437870355957570087446546456971276065
Offset: 0
G.f.: A(x) = 1 + 2*x + 7*x^2 + 147*x^3 + 14481*x^4 + 6183605*x^5 +...
where the logarithm of the g.f. equals the l.g.f. of A207140:
log(A(x)) = x + 2*x^2/2 + 10*x^3/3 + 407*x^4/4 + 56746*x^5/5 +...
-
{a(n)=polcoeff(exp(sum(m=1,n+1,x^m/m*sum(k=0,m,binomial(m,k)*binomial(m^2,k^2))+x*O(x^n))),n)}
for(n=0,16,print1(a(n),", "))
Showing 1-5 of 5 results.
Comments