cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A167010 a(n) = Sum_{k=0..n} C(n,k)^n.

Original entry on oeis.org

1, 2, 6, 56, 1810, 206252, 86874564, 132282417920, 770670360699138, 16425660314368351892, 1367610300690018553312276, 419460465362069257397304825200, 509571049488109525160616367158261124, 2290638298071684282149128235413262383804352
Offset: 0

Views

Author

Paul D. Hanna, Nov 17 2009

Keywords

Comments

The number of n*n 0-1 matrices with equal numbers of nonzeros in every row. - David Eppstein, Jan 19 2012

Examples

			The triangle A209427 of coefficients C(n,k)^n, n>=k>=0, begins:
  1;
  1,     1;
  1,     4,        1;
  1,    27,       27,        1;
  1,   256,     1296,      256,        1;
  1,  3125,   100000,   100000,     3125,     1;
  1, 46656, 11390625, 64000000, 11390625, 46656,    1; ...
in which the row sums form this sequence.
		

Crossrefs

Programs

  • Magma
    [(&+[Binomial(n,j)^n: j in [0..n]]): n in [0..20]]; // G. C. Greubel, Aug 26 2022
    
  • Mathematica
    Table[Sum[Binomial[n, k]^n, {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Nov 05 2012 *)
  • PARI
    a(n)=sum(k=0,n,binomial(n,k)^n)
    
  • SageMath
    [sum(binomial(n,j)^n for j in (0..n)) for n in (0..20)] # G. C. Greubel, Aug 26 2022

Formula

Ignoring initial term, equals the logarithmic derivative of A167007. [Paul D. Hanna, Nov 18 2009]
If n is even then a(n) ~ c * exp(-1/4) * 2^(n^2 + n/2)/((Pi*n)^(n/2)), where c = Sum_{k = -oo..oo} exp(-2*k^2) = 1.271341522189... (see A218792). - Vaclav Kotesovec, Nov 05 2012
If n is odd then c = Sum_{k = -infinity..infinity} exp(-2*(k+1/2)^2) = 1.23528676585389... - Vaclav Kotesovec, Nov 06 2012
a(n) = (n!)^n * [x^n] (Sum_{k>=0} x^k / (k!)^n)^2. - Ilya Gutkovskiy, Jul 15 2020

A167009 a(n) = Sum_{k=0..n} C(n^2, n*k).

Original entry on oeis.org

1, 2, 8, 170, 16512, 6643782, 11582386286, 79450506979090, 2334899414608412672, 265166261617029717011822, 128442558588779813655233443038, 238431997806538515396060130910954852
Offset: 0

Views

Author

Paul D. Hanna, Nov 17 2009

Keywords

Examples

			The triangle A209330 of coefficients C(n^2, n*k), n>=k>=0, begins:
  1;
  1,       1;
  1,       6,          1;
  1,      84,         84,          1;
  1,    1820,      12870,       1820,          1;
  1,   53130,    3268760,    3268760,      53130,       1;
  1, 1947792, 1251677700, 9075135300, 1251677700, 1947792,     1; ...
in which the row sums form this sequence.
		

Crossrefs

Programs

  • Magma
    [(&+[Binomial(n^2, n*j): j in [0..n]]): n in [0..20]]; // G. C. Greubel, Aug 26 2022
    
  • Mathematica
    Table[Sum[Binomial[n^2,n*k],{k,0,n}],{n,0,15}] (* Harvey P. Dale, Dec 11 2011 *)
  • PARI
    a(n)=sum(k=0,n,binomial(n^2,n*k))
    
  • Sage
    [sum(binomial(n^2, n*j) for j in (0..n)) for n in (0..20)] # G. C. Greubel, Aug 26 2022

Formula

Ignoring initial term, equals the logarithmic derivative of A167006. - Paul D. Hanna, Nov 18 2009
If n is even then a(n) ~ c * 2^(n^2 + 1/2)/(n*sqrt(Pi)), where c = Sum_{k = -infinity..infinity} exp(-2*k^2) = 1.271341522189... (see A218792). - Vaclav Kotesovec, Nov 05 2012
If n is odd then c = Sum_{k = -infinity..infinity} exp(-2*(k+1/2)^2) = 1.23528676585389... - Vaclav Kotesovec, Nov 06 2012
a(n) = A306846(n^2,n) = [x^(n^2)] (1-x)^(n-1)/((1-x)^n - x^n) for n > 0. - Seiichi Manyama, Oct 11 2021

A328812 Constant term in the expansion of (Product_{k=1..n} (1 + x_k) + Product_{k=1..n} (1 + 1/x_k))^n.

Original entry on oeis.org

1, 2, 10, 164, 9826, 2031252, 1622278624, 4579408029576, 51207103076632066, 2052124795850957537060, 330463219813679264204224300, 192454957455454582636391397662856, 454577215426865313388106323928590128736, 3907905904547764847197154889183844343802986600
Offset: 0

Views

Author

Seiichi Manyama, Oct 28 2019

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[Binomial[n, k]^(n + 1), {k, 0, n}]; Array[a, 14, 0] (* Amiram Eldar, May 06 2021 *)
  • PARI
    {a(n) = sum(k=0, n, binomial(n, k)^(n+1))}

Formula

a(n) = A309010(n,n+1) = Sum_{k=0..n} binomial(n,k)^(n+1).
a(n) ~ c * exp(-1/4) * 2^((2*n+1)*(n+1)/2) / (Pi*n)^((n+1)/2), where c = A218792 = Sum_{k = -infinity..infinity} exp(-2*k^2) = 1.271341522189... and c = Sum_{k = -infinity..infinity} exp(-2*(k+1/2)^2) = 1.23528676585389... if n is odd. - Vaclav Kotesovec, May 06 2021

A195907 Decimal expansion of Sum_{n = -oo..oo} exp(-n^2).

Original entry on oeis.org

1, 7, 7, 2, 6, 3, 7, 2, 0, 4, 8, 2, 6, 6, 5, 2, 1, 5, 3, 0, 3, 1, 2, 5, 0, 5, 5, 1, 1, 5, 7, 8, 5, 8, 4, 8, 1, 3, 4, 3, 3, 8, 6, 0, 4, 5, 3, 7, 2, 2, 4, 6, 0, 5, 3, 8, 3, 1, 5, 9, 0, 5, 1, 0, 8, 7, 9, 9, 6, 8, 6, 8, 0, 8, 3, 9, 6, 3, 4, 0, 1, 2, 5, 4, 0, 3, 3, 8, 7, 1, 7, 4, 2, 4, 9, 6, 0, 0, 2, 9, 6, 4, 0, 5, 1, 9, 0, 7, 1, 3, 4, 7, 3, 5, 1
Offset: 1

Views

Author

N. J. A. Sloane, Sep 25 2011

Keywords

Comments

A Riemann sum approximation to Integral_{-oo..oo} exp(-x^2) dx = sqrt(Pi).

Examples

			1.77263720482665215303125055115785848134338604537224605383159051...
For comparison, sqrt(Pi) = 1.7724538509055160272981674833411451827975494561223871282138... (A002161).
		

References

  • Mentioned by N. D. Elkies in a lecture on the Poisson summation formula in Nashville TN in May 2010.

Crossrefs

Programs

  • Mathematica
    N[Sum[Exp[-n^2], {n, -Infinity, Infinity}], 200]
    RealDigits[ N[ EllipticTheta[3, 0, 1/E], 115]][[1]] (* Jean-François Alcover, Nov 08 2012 *)
  • PARI
    1 + 2*suminf(n=1,exp(-n^2)) \\ Charles R Greathouse IV, Jun 06 2016
    
  • PARI
    (eta(I/Pi))^5 / (eta(I/(2*Pi))^2 * eta(2*I/Pi)^2) \\ Jianing Song, Oct 13 2021

Formula

Equals Jacobi theta_{3}(0,exp(-1)). - Jianing Song, Oct 13 2021
Equals eta(i/Pi)^5 / (eta(i/(2*Pi))*eta(2*i/Pi))^2, where eta(t) = 1 - q - q^2 + q^5 + q^7 - q^12 - q^15 + ... is the Dedekind eta function without the q^(1/24) factor in powers of q = exp(2*Pi*i*t) (Cf. A000122). - Jianing Song, Oct 14 2021
Equals Product_{k>=1} tanh((k*(1 + i*Pi))/2), i=sqrt(-1). - Antonio Graciá Llorente, May 13 2024

A229052 a(n) = Sum_{k=0..n} binomial(n^2-n*k, n*k-k^2) * binomial(n*k, k^2).

Original entry on oeis.org

1, 2, 6, 92, 6662, 2150552, 3093730764, 18251332286098, 466740831542894470, 47238803741195397513182, 20522607409110459026633535856, 34700017072200465774261952422246668, 250699892545838622857396499800167790109260, 6984916990466628202550631436961441381064765905022
Offset: 0

Views

Author

Paul D. Hanna, Sep 22 2013

Keywords

Examples

			The triangle A228832(n,k) = C(n*k, k^2) illustrates the terms involved in the sum a(n) = Sum_{k=0..n} A228832(n, n-k) * A228832(n, k):
1;
1, 1;
1, 2, 1;
1, 3, 15, 1;
1, 4, 70, 220, 1;
1, 5, 210, 5005, 4845, 1;
1, 6, 495, 48620, 735471, 142506, 1;
1, 7, 1001, 293930, 30421755, 183579396, 5245786, 1; ...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n^2 - n k, n k - k^2] Binomial[n k, k^2], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Sep 22 2013 *)
  • PARI
    {a(n)=sum(k=0,n,binomial(n^2-n*k,n*k-k^2)*binomial(n*k,k^2))}
    for(n=0,20,print1(a(n),", "))

Formula

a(n) = Sum_{k=0..n} binomial(n^2-n*k, (n-k)^2) * binomial(n*k, k^2).
a(n) = Sum_{k=0..n} A228832(n, n-k) * A228832(n, k).
a(n) = Sum_{k=0..n} (n^2-n*k)! * (n*k)! / ( ((n-k)^2)! * (n*k-k^2)!^2 * (k^2)! ).
a(n) ~ c * 2^(n^2+2)/(Pi*n^2), where c = EllipticTheta[3,0,1/E^2] = 1.271341522189... if n is even and c = EllipticTheta[2,0,1/E^2] = 1.23528676585389... if n is odd. - Vaclav Kotesovec, Sep 22 2013

A358495 a(n) = Sum_{k=0..n} binomial(binomial(n, k), n).

Original entry on oeis.org

1, 2, 1, 2, 17, 506, 48772, 13681602, 12287555282, 33669343492094, 311704008906073448, 9309805333008203501246, 987309241535765332024955809, 351345748109942610415182510895442, 459648902729700156671704473390158212154, 2067884865276847662816755891452805155809167114
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 19 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[Binomial[n, k], n], {k, 0, n}], {n, 0, 16}]
  • PARI
    a(n) = sum(k=0, n, binomial(binomial(n, k), n)); \\ Michel Marcus, Nov 19 2022

Formula

a(n) ~ c * binomial(binomial(n, n/2), n), where c = EllipticTheta[3,0,1/E^2] = JacobiTheta3(0,exp(-2)) = A218792 = 1.271341522189... if n is even and c = EllipticTheta[2,0,1/E^2] = JacobiTheta2(0,exp(-2)) = 1.23528676585389... if n is odd.
Equivalently, a(n) ~ c * 2^(n^2 + n/2 - 1/2) * exp(n - 1/4) / (Pi^((n+1)/2) * n^((3*n+1)/2)).
Showing 1-6 of 6 results.