A167010 a(n) = Sum_{k=0..n} C(n,k)^n.
1, 2, 6, 56, 1810, 206252, 86874564, 132282417920, 770670360699138, 16425660314368351892, 1367610300690018553312276, 419460465362069257397304825200, 509571049488109525160616367158261124, 2290638298071684282149128235413262383804352
Offset: 0
Examples
The triangle A209427 of coefficients C(n,k)^n, n>=k>=0, begins: 1; 1, 1; 1, 4, 1; 1, 27, 27, 1; 1, 256, 1296, 256, 1; 1, 3125, 100000, 100000, 3125, 1; 1, 46656, 11390625, 64000000, 11390625, 46656, 1; ... in which the row sums form this sequence.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..59
- Vaclav Kotesovec, Interesting asymptotic formulas for binomial sums, Jun 09 2013.
Programs
-
Magma
[(&+[Binomial(n,j)^n: j in [0..n]]): n in [0..20]]; // G. C. Greubel, Aug 26 2022
-
Mathematica
Table[Sum[Binomial[n, k]^n, {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Nov 05 2012 *)
-
PARI
a(n)=sum(k=0,n,binomial(n,k)^n)
-
SageMath
[sum(binomial(n,j)^n for j in (0..n)) for n in (0..20)] # G. C. Greubel, Aug 26 2022
Formula
Ignoring initial term, equals the logarithmic derivative of A167007. [Paul D. Hanna, Nov 18 2009]
If n is even then a(n) ~ c * exp(-1/4) * 2^(n^2 + n/2)/((Pi*n)^(n/2)), where c = Sum_{k = -oo..oo} exp(-2*k^2) = 1.271341522189... (see A218792). - Vaclav Kotesovec, Nov 05 2012
If n is odd then c = Sum_{k = -infinity..infinity} exp(-2*(k+1/2)^2) = 1.23528676585389... - Vaclav Kotesovec, Nov 06 2012
a(n) = (n!)^n * [x^n] (Sum_{k>=0} x^k / (k!)^n)^2. - Ilya Gutkovskiy, Jul 15 2020
Comments