cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A155200 G.f.: A(x) = exp( Sum_{n>=1} 2^(n^2) * x^n/n ), a power series in x with integer coefficients.

Original entry on oeis.org

1, 2, 10, 188, 16774, 6745436, 11466849412, 80444398636280, 2306003967992402758, 268654794629082985019564, 126765597346260977505891041836, 241678070948246232010898235031930952, 1858395916567787793818891330877931472153500, 57560683587056536617649234722821582390470430186648
Offset: 0

Views

Author

Paul D. Hanna, Feb 04 2009

Keywords

Comments

More generally, it appears that for m integer, exp( Sum_{n >= 1} m^(n^2) * x^n/n ) is a power series in x with integer coefficients.
This is correct: if b(n) = m^(n^2) then by the little Fermat theorem the Gauss congruences hold: b(n*p^k) == b(n*p^(k-1)) ( mod p^k ) for all prime p and positive integers n and k. Then apply Stanley, Ch. 5, Ex. 5.2(a). - Peter Bala, Dec 25 2019
Conjecture: highest exponent of 2 dividing a(n) = A000120(n) = number of 1's in binary expansion of n, so that a(n)/2^A000120(n) is odd for n >= 0. - Paul D. Hanna, Sep 01 2009

Examples

			G.f.: A(x) = 1 + 2*x + 10*x^2 + 188*x^3 + 16774*x^4 + 6745436*x^5 +...
log(A(x)) = 2*x + 2^4*x^2/2 + 2^9*x^3/3 + 2^16*x^4/4 + 2^25*x^5/5 +...
		

References

  • R. P. Stanley. Enumerative combinatorics, Vol. 2. Volume 62 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1999.

Crossrefs

Cf. A155201, A155202, A155810 (triangle), variants: A155203, A155207.

Programs

  • Maple
    seq(coeff(series(exp(add(2^(k^2)*x^k/k,k=1..n)),x,n+1), x, n), n = 0 .. 15); # Muniru A Asiru, Dec 19 2018
  • Mathematica
    nmax = 14; Exp[Sum[2^(n^2) x^n/n, {n, 1, nmax}]] + O[x]^nmax // CoefficientList[#, x]& (* Jean-François Alcover, Feb 14 2019 *)
  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n+1,2^(m^2)*x^m/m)+x*O(x^n)),n)}
    
  • PARI
    {a(n)=if(n==0,1,(1/n)*(2*a(n-1) + sum(k=1,n-1,4^k*a(k)*(2*(k+1)*a(n-1-k) - (n-k)*a(n-k)))))} \\ Paul D. Hanna, Mar 11 2009
    
  • PARI
    {a(n)=if(n==0,1,(1/n)*sum(k=1,n,2^(k^2)*a(n-k)))} \\ Paul D. Hanna, Sep 01 2009

Formula

Equals column 0 of triangle A155810.
G.f. satisfies: 2*A(x)*A(4x) + 8*x*A(x)*A'(4x) - A'(x)*A(4x) = 0. - Paul D. Hanna, Feb 24 2009
From Paul D. Hanna, Mar 11 2009: (Start)
The differential equation implies recurrence:
n*a(n) = 2*a(n-1) + Sum_{k=1..n-1} 4^k*a(k)*(2*(k+1)*a(n-1-k) - (n-k)*a(n-k)) for n > 0, with a(0) = 1.
G.f. A(x) generates A156631:
A156631(n) = [x^n] A(x)^(2^n) for n >= 0, where the g.f. of A156631 = Sum_{n >= 0} [Sum_{k >= 1} (2^n*2^k*x)^k/k]^n/n!. (End)
a(n) = (1/n)*Sum_{k = 1..n} 2^(k^2)*a(n-k), a(0) = 1. - Vladeta Jovovic, Feb 04 2009
Euler transform of A159034. - Vladeta Jovovic, Apr 02 2009
a(n) = B_n( 0!*2^(1^2), 1!*2^(2^2), 2!*2^(3^2), ..., (n-1)!*2^(n^2) ) / n!, where B_n() is the complete Bell polynomial. - Max Alekseyev, Oct 10 2014
a(n) ~ 2^(n^2) / n. - Vaclav Kotesovec, Oct 09 2019

A155204 G.f.: A(x) = exp( Sum_{n>=1} (3^n + 1)^n * x^n/n ), a power series in x with integer coefficients.

Original entry on oeis.org

1, 4, 58, 7528, 11333974, 173018964568, 25223063625377572, 34295288559321731710864, 429734241619476967064512081894, 49292144502053186639397817183561560472
Offset: 0

Views

Author

Paul D. Hanna, Feb 04 2009

Keywords

Comments

More generally, for m integer, exp( Sum_{n>=1} (m^n + y)^n * x^n/n ) is a power series in x and y with integer coefficients.

Examples

			G.f.: A(x) = 1 + 4*x + 58*x^2 + 7528*x^3 + 11333974*x^4 + 173018964568*x^5 +...
log(A(x)) = 4*x + 10^2*x^2/2 + 28*x^3/3 + 82^4*x^4/4 + 244^5*x^5/5 +...
		

Crossrefs

Cf. A155203, A155205, A155206, A155812 (triangle), A202989; variants: A155201, A155208.

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n+1,(3^m+1)^m*x^m/m)+x*O(x^n)),n)}

Formula

Equals row sums of triangle A155812.

A155810 Triangle, read by rows, where g.f.: A(x,y) = exp( Sum_{n>=1} (2^n + y)^n * x^n/n ) is a power series in x and y with integer coefficients.

Original entry on oeis.org

1, 2, 1, 10, 6, 1, 188, 82, 14, 1, 16774, 4452, 490, 30, 1, 6745436, 1074934, 71108, 2602, 62, 1, 11466849412, 1082704500, 43173414, 951300, 13002, 126, 1, 80444398636280, 4411700155252, 104251164804, 1387446246, 11470404, 62538, 254, 1, 2306003967992402758, 72146891831948808, 989785148972932, 7803708940836, 38993810694, 129076164, 292810, 510, 1, 268654794629082985019564, 4724816968764733073446, 36967624172237518088, 169140002768370820, 500466007443108, 1001353593606, 1382564804, 1343434, 1022, 1
Offset: 0

Views

Author

Paul D. Hanna, Feb 04 2009

Keywords

Comments

More generally, for m integer, exp( Sum_{n>=1} (m^n + y)^n * x^n/n ) is a power series in x and y with integer coefficients.

Examples

			G.f.: A(x,y) = 1 + (2 + y)x + (10 + 6y + y^2)x^2 + (188 + 82y + 14y^2 + y^3)x^3 +...
Triangle begins:
1;
2, 1;
10, 6, 1;
188, 82, 14, 1;
16774, 4452, 490, 30, 1;
6745436, 1074934, 71108, 2602, 62, 1;
11466849412, 1082704500, 43173414, 951300, 13002, 126, 1;
80444398636280, 4411700155252, 104251164804, 1387446246, 11470404, 62538, 254, 1;
2306003967992402758, 72146891831948808, 989785148972932, 7803708940836, 38993810694, 129076164, 292810, 510, 1;
268654794629082985019564, 4724816968764733073446, 36967624172237518088, 169140002768370820, 500466007443108, 1001353593606, 1382564804, 1343434, 1022, 1; ...
		

Crossrefs

Cf. A155200 (column 0), A155201 (row sums), A155811 (column 1).

Programs

  • PARI
    {T(n,k)=polcoeff(polcoeff(exp(sum(m=1,n+1,(2^m+y)^m*x^m/m)+x*O(x^n)),n,x),k,y)}
    for(n=0, 12, for(k=0, n, print1(T(n, k), ", ")); print(""))

Formula

G.f.: A(x,y) = Sum_{n>=0} Sum_{k>=0} T(n,k)*x^n*y^k.

A155208 G.f.: A(x) = exp( Sum_{n>=1} (4^n + 1)^n * x^n/n ), a power series in x with integer coefficients.

Original entry on oeis.org

1, 5, 157, 92285, 1091087581, 226287110093405, 788215837483128170845, 45292586018794926904179045725, 42540488665745908362239138191829777245, 649578584556365450465861374646071307864262693725
Offset: 0

Views

Author

Paul D. Hanna, Feb 04 2009

Keywords

Comments

More generally, for m integer, exp( Sum_{n>=1} (m^n + y)^n * x^n/n ) is a power series in x and y with integer coefficients.

Examples

			G.f.: A(x) = 1 + 5*x + 157*x^2 + 92285*x^3 + 1091087581*x^4 +...
log(A(x)) = 5*x + 17^2*x^2/2 + 65^3*x^3/3 + 257^4*x^4/4 + 1025^5*x^5/5 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n+1,(4^m+1)^m*x^m/m)+x*O(x^n)),n)}

A156630 G.f.: A(x) = Sum_{n>=0} [ Sum_{k>=1} (2^n + 2^k)^k*x^k/k ]^n / n!, a power series in x with integer coefficients.

Original entry on oeis.org

1, 4, 36, 692, 38186, 10012732, 14013453284, 89892733239928, 2455110210935634790, 278266942487534934333100, 129264916198375365693754194988, 244287539590735476133066282560012360
Offset: 0

Views

Author

Paul D. Hanna, Feb 12 2009

Keywords

Comments

Compare to these dual g.f.s:
Sum_{n>=0} [ Sum_{k>=1} (2^n+1)^k*x^k/k ]^n/n! (A133991);
Sum_{n>=0} [ Sum_{k>=1} (2^k+1)^k*x^k/k ]^n/n! (A155201);
which, when expanded as power series in x, have only integer coefficients.

Examples

			G.f.: A(x) = 1 + 4*x + 36*x^2 + 692*x^3 + 38186*x^4 + 10012732*x^5 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(sum(j=0,n,sum(k=1, n, ((2^j+2^k)*x)^k/k+x*O(x^n))^j/j!),n)}

A156910 G.f.: A(x) = exp( Sum_{n>=1} 2^(n^2)/(1 - 2^n*x)^n * x^n/n ).

Original entry on oeis.org

1, 2, 14, 268, 21462, 7872396, 12585797612, 84949155244024, 2379063526056509734, 273414369715003663482380, 128009001272184822673783879332, 242979321424122460096958142064785384
Offset: 0

Views

Author

Paul D. Hanna, Feb 17 2009

Keywords

Comments

An example of this logarithmic identity at q=2:
Sum_{n>=1} [q^(n^2)/(1 - q^n*x)^n]*x^n/n = Sum_{n>=1} [(1 + q^n)^n - 1]*x^n/n.

Examples

			G.f.: A(x) = 1 + 2*x + 14*x^2 + 268*x^3 + 21462*x^4 +...
log(A(x)) = 2/(1-2*x)*x + 2^4/(1-2^2*x)^2*x^2/2 + 2^9/(1-2^3*x)^3*x^3/3 +...
log(A(x)) = (3-1)*x + (5^2-1)*x^2/2 + (9^3-1)*x^3/3 + (17^4-1)*x^4/4 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n+1, 2^(m^2)/(1-2^m*x)^m*x^m/m)+x*O(x^n)), n)}
    
  • PARI
    /* As First Differences of A155201: */
    {a(n)=polcoeff((1-x)*exp(sum(m=1, n+1, (2^m+1)^m*x^m/m)+x*O(x^n)), n)}

Formula

G.f.: A(x) = (1-x)*exp( Sum_{n>=1} (1 + 2^n)^n * x^n/n );
Equals the first differences of A155201.

A202516 G.f.: exp( Sum_{n>=1} (2^n + 3^n)^n * x^n/n ).

Original entry on oeis.org

1, 5, 97, 14735, 22208431, 314664801905, 41448076127290195, 50905029765702161210225, 582983891132858366160979787245, 62080074367851800086180277369110042475, 61205889017397342360456211893643596980919936577
Offset: 0

Views

Author

Paul D. Hanna, Dec 20 2011

Keywords

Comments

More generally, for integers p and q, exp( Sum_{n>=1} (p^n + q^n)^n * x^n/n ) is a power series in x with integer coefficients.

Examples

			G.f.: A(x) = 1 + 5*x + 97*x^2 + 14735*x^3 + 22208431*x^4 +...
where
log(A(x)) = (2+3)*x + (2^2 + 3^2)^2*x^2/2 + (2^3 + 3^3)^3*x^3/3 + (2^4 + 3^4)^4*x^4/4 + (2^5 + 3^5)^5*x^5/5 +...
more explicitly,
log(A(x)) = 5*x + 13^2*x^2/2 + 35^3*x^3/3 + 97^4*x^4/4 + 275^5*x^5/5 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n,(2^m+3^m)^m*x^m/m)+x*O(x^n)),n)}

A202517 G.f.: exp( Sum_{n>=1} (3^n - 2^n)^n * x^n/n ).

Original entry on oeis.org

1, 1, 13, 2299, 4465027, 83649932869, 14413888012788031, 22412828378864422506133, 312169717565869706933620630009, 38865154523992131836783382601539858727, 43266472789023671032936589458127528396392744933
Offset: 0

Views

Author

Paul D. Hanna, Dec 20 2011

Keywords

Comments

More generally, for integers p and q, exp( Sum_{n>=1} (p^n - q^n)^n * x^n/n ) is a power series in x with integer coefficients.

Examples

			G.f.: A(x) = 1 + x + 13*x^2 + 2299*x^3 + 4465027*x^4 + 83649932869*x^5 +...
where
log(A(x)) = (3-2)*x + (3^2 - 2^2)^2*x^2/2 + (3^3 - 2^3)^3*x^3/3 + (3^4 - 2^4)^4*x^4/4 + (3^5 - 2^5)^5*x^5/5 +...
more explicitly,
log(A(x)) = x + 5^2*x^2/2 + 19^3*x^3/3 + 65^4*x^4/4 + 211^5*x^5/5 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n,(3^m-2^m)^m*x^m/m)+x*O(x^n)),n)}
Showing 1-8 of 8 results.