A155207 G.f.: A(x) = exp( Sum_{n>=1} 4^(n^2) * x^n/n ), a power series in x with integer coefficients.
1, 4, 136, 87904, 1074100576, 225184288253824, 787061981348092400896, 45273238870711805132010916864, 42535296046210357883346895894694749696, 649556283428320264374891976653586736162144180224
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + 4*x + 136*x^2 + 87904*x^3 + 1074100576*x^4 +... log(A(x)) = 4*x + 4^4*x^2/2 + 4^9*x^3/3 + 4^16*x^4/4 + 4^25*x^5/5 +...
Programs
-
PARI
{a(n)=polcoeff(exp(sum(m=1,n+1,4^(m^2)*x^m/m)+x*O(x^n)),n)}
Formula
G.f. satisfies: A'(x)/A(x) = 4 + 64*x*A'(16*x)/A(16*x). - Paul D. Hanna, Nov 15 2022
a(n) ~ 4^(n^2)/n. - Vaclav Kotesovec, Oct 31 2024
Comments