Original entry on oeis.org
2, 3, 71, 97, 103, 331, 4091, 5879, 7207, 7639, 17123, 17383, 20809, 46889, 47363, 139493, 142969, 150869, 154111, 154753, 155663, 162419, 165059, 166739, 174893, 179989, 184273, 190759, 197311, 199909, 270527, 280613
Offset: 1
Ulrich Krug (leuchtfeuer37(AT)gmx.de), Jan 22 2009, Mar 02 2009, Mar 04 2009
A176465
Palindromic primes p(k) = palprime(k) such that their sum of digits ("sod") equals sum of digits of their palprime index k.
Original entry on oeis.org
13331, 1022201, 1311131, 3001003, 3002003, 100707001, 102272201, 103212301, 103323301, 103333301, 104111401, 105202501, 105313501, 105323501, 106060601, 111181111, 111191111, 112494211, 121080121, 140505041, 160020061, 160161061
Offset: 1
Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Apr 18 2010
p(1) = 13331 = palprime(29), sod(p(1)) = 1+3+3+3+1 = 11 = sod(29), first term
p(8) = 103212301 = palprime(832), sod(p(8)) = 1+0+3+2+1+2+3+1 = 13 = 8+3+2 = sod(832), 8th term
p(?) = 156300010003651 = palprime(99643), sod(p(?)) = 31 = sod(99733)
Note successive p(i) and p(i+1) which are also consecutive palindromic primes (i = 4, 9, 13, 16, 22, 33)
- A. H. Beiler: Recreations in the Theory of Numbers: The Queen of Mathematical Entertains. Dover Publications, New York, 1964
- M. Gardner: Mathematischer Zirkus , Ullstein Berlin-Frankfurt/Main-Wien, 1988
- K. G. Kroeber: Ein Esel lese nie. Mathematik der Palindrome, Rowohlt Tb., Hamburg, 2003
A174884
Palindromic primes using only (decimal) square digits 0,1,4,9.
Original entry on oeis.org
11, 101, 191, 919, 11411, 19991, 91019, 94049, 94949, 1114111, 1190911, 1409041, 1411141, 1444441, 1490941, 1909091, 1941491, 9049409, 9091909, 9109019, 9110119, 9149419, 9199919, 9400049, 9414149, 9419149, 9440449, 9919199
Offset: 1
Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Apr 01 2010
11 = prime(5) = palprime(5), 1st term of sequence.
101 = prime(26) = palprime(6), 2nd term of sequence.
Next term using only 0 and 1 is 100111001 = prime(5767473) = palprime(785).
- Roland Sprague, Unterhaltsame Mathematik, neue Probleme, ueberraschende Loesungen, Vieweg, Braunschweig, 1961
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books: London, 1986.
-
Select[FromDigits/@Tuples[{0,1,4,9},7],PalindromeQ[#]&&PrimeQ[#]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Mar 06 2019 *)
A178654
Palindromic primes of the form (q//R(q))/11 where q is an emirp, R() denotes digit-reversal and // concatenation.
Original entry on oeis.org
727, 10301, 14341, 16361, 18181, 30703, 1003001, 1145411, 1163611, 1201021, 1363631, 1452541, 3001003, 3425243, 3503053, 100030001, 102343201, 103212301, 105272501, 105343501, 107070701, 107121701, 112030211, 124525421, 125010521
Offset: 1
Ulrich Krug (leuchtfeuer37(AT)gmx.de), Jun 01 2010
79 = emirp(7), 97 = emirp(8), 7997 / 11 = 727 = palprime(15) is first term
113 = emirp(10), 311 = emirp(16), 113311 / 11 = 10301 = palprime(21) is 2nd term
14303 = emirp(414), 30341 = emirp(639), 1430330341 / 11 = 130030031 = palprime(1229), 26th term
- M. Gardner: Mathematischer Zirkus, Seite 259 ff., Ullstein Berlin-Frankfurt/M.-Wien, 1988
- W. Lietzmann: Sonderlinge im Reich der Zahlen, Duemmler, Bonn, 1948
Showing 1-4 of 4 results.
Comments