cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A176790 Honaker primes of the form k^2 + 1.

Original entry on oeis.org

3137, 4357, 13457, 80657, 115601, 184901, 309137, 341057, 1008017, 1073297, 4227137, 5541317, 11806097, 16974401, 18576101, 22848401, 24443137, 24542117, 27625537, 28132417, 30913601, 39112517, 42432197, 46049797, 46321637, 52417601, 71132357, 84713617, 92736901
Offset: 1

Views

Author

Ulrich Krug (leuchtfeuer37(AT)gmx.de), Apr 26 2010

Keywords

Comments

The intersection of A033548 with A002522 or with A002496.
The list of associated n is: 56, 66, 116, 284, 340, 430, 556, 584, 1004, 1036, 2056, ...
The associated indices in A002496 are: 14, 15, 21, 48, 53, 61, 73, 76, 113, 115, 215, 243, 341, 395, 414, ...

Examples

			a(1) = 3137 = 56^2 + 1 = A033548(24).
a(2) = 4357 = 66^2 + 1 = A033548(31).
		

References

  • M. Aigner, Diskrete Mathematik, Vieweg u. Teubner, 6. Aufl., 2006.
  • E. Grosswald, Representations of Integers as Sums of Squares, Springer-Verlag, Berlin, 1985.
  • H. Scheid, Zahlentheorie, Spektrum Akademischer Verlag, 4. Aufl., 2006.

Crossrefs

Programs

  • Mathematica
    fHQ[n_]:=Plus@@IntegerDigits@n==Plus@@IntegerDigits@PrimePi@n;Select[Range[10000]^2+1, PrimeQ[#] && fHQ[#] &]  (* K. D. Bajpai, Apr 06 2021 *)
  • PARI
    for(n =1, 50000, my(k=n^2+1); if(isprime(k) && vecsum(digits(k))==vecsum(digits(primepi(k))), print1(k, ", "))); \\ K. D. Bajpai, Apr 06 2021

Extensions

Comments tightened by R. J. Mathar, Jun 07 2010
a(21)-a(29) from K. D. Bajpai, Apr 06 2021

A177678 Palindromic primes p = q//r//q such that q and r are also palindromic primes.

Original entry on oeis.org

353, 373, 727, 757, 11311, 31013, 31513, 33533, 37273, 37573, 39293, 71317, 71917, 77977, 1175711, 1178711, 1317131, 1513151, 1917191, 3103013, 3106013, 3127213, 3135313, 3155513, 3160613, 3166613, 3181813, 3193913, 3198913, 3304033
Offset: 1

Views

Author

Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), May 10 2010

Keywords

Comments

p = palprime(i), q = palprime(j), r = palprime(k) (see A002385).
Indices (i,j,k): (12,2,3), (13,2,4), (15,4,1), (16,4,3), (24,5,2), (52,2,6), (53,2,8), (56,2,12), (65,2,15), (66,2,16), (70,2,20), (74,4,7), (75,4,10), (88,4,18), (140,11,16), (142,11,17), (174,7,4), (206,8,2), (282,10,4), (318,2,21), (319,2,23), (320,2,27), (321,11,3), (323,2,35), (325,2,36), (326,2,39), (327,2,42), (329,2,44), (331,2,45), (354,2,49), (356,2,50), (357,2,52), (358,2,53), (365,2,61), (366,2,63), (368,2,64), (370,2,67), (372,2,70), (424,2,76), (426,2,79), (430,2,84), (434,2,86), (435,2,87), (437,2,89), (439,2,92), (440,2,94), (464,2,97), (467,2,102), (468,2,103), (469,2,107).
Note an example that the description with q and r is not (necessarily) unique: (2388,2,179) or (2388,11,14) for 313383313 = 3//1338331//3 = 313//383//313.

Examples

			3 = palprime(2), 5 = palprime(3), 3//5//3 = 353 = palprime(12) is first term.
3 = palprime(2), 7 = palprime(4), 3//7//3 = 373 = palprime(13) is 2nd term.
		

References

  • M. Gardner: Mathematischer Zirkus, Ullstein Berlin-Frankfurt/Main-Wien, 1988
  • K. G. Kroeber: Ein Esel lese nie. Mathematik der Palindrome, Rowohlt Tb., Hamburg, 2003

Crossrefs

A176760 Numbers k such that k^2 and k^4 have the same sum of digits.

Original entry on oeis.org

0, 1, 3, 10, 17, 19, 27, 30, 57, 93, 100, 170, 190, 219, 267, 270, 300, 314, 327, 359, 387, 417, 423, 424, 570, 685, 693, 807, 828, 891, 917, 930, 963, 1000, 1207, 1223, 1317, 1333, 1673, 1693, 1700, 1827, 1864, 1900, 1917, 2141, 2190, 2202, 2213, 2364, 2367
Offset: 1

Views

Author

Ulrich Krug (leuchtfeuer37(AT)gmx.de), Apr 25 2010

Keywords

Comments

Let sod(n) := digital sum of n (A007953); here we have sod(n^2) = sod(n^4).
Trivial cases:
(I) Powers of 10, as sod((10^k)^2) = sod((10^k)^4) = 1.
(II) If N is a term of sequence, then so is 10 * N.

Examples

			sod(3^2) = sod(9) = 9 = sod(81) = sod(3^4), so 3 is a term.
sod(17^2) = sod(289) = 19 = sod(83521) = sod(17^4), so 17 is a term.
		

References

  • Hans Schubart, Einfuehrung in die klassische und moderne Zahlentheorie, Vieweg, Braunschweig, 1974.

Crossrefs

Programs

  • Mathematica
    Select[Range[0,2000],Total[IntegerDigits[#^2]]==Total[IntegerDigits[#^4]]&]  (* Harvey P. Dale, Jan 19 2011 *)

Extensions

Edited by D. S. McNeil, Nov 21 2010
a(43)-a(51) from Jason Yuen, Oct 13 2024
Showing 1-3 of 3 results.