A155467 Triangle T(n, k) = Eulerian(n+1, k)*Binomial(n+1, k)/(k+1), read by rows.
1, 1, 1, 1, 6, 1, 1, 22, 22, 1, 1, 65, 220, 65, 1, 1, 171, 1510, 1510, 171, 1, 1, 420, 8337, 21140, 8337, 420, 1, 1, 988, 40068, 218666, 218666, 40068, 988, 1, 1, 2259, 175296, 1852914, 3935988, 1852914, 175296, 2259, 1, 1, 5065, 717600, 13655760, 55034868, 55034868, 13655760, 717600, 5065, 1
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 1, 6, 1; 1, 22, 22, 1; 1, 65, 220, 65, 1; 1, 171, 1510, 1510, 171, 1; 1, 420, 8337, 21140, 8337, 420, 1; 1, 988, 40068, 218666, 218666, 40068, 988, 1; 1, 2259, 175296, 1852914, 3935988, 1852914, 175296, 2259, 1; 1, 5065, 717600, 13655760, 55034868, 55034868, 13655760, 717600, 5065, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Crossrefs
Programs
-
Mathematica
(* First program *) Needs["Combinatorica`"] T[n_, k_]:= Eulerian[n+1, k]*Binomial[n+1, k]/(k+1); Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* Roger L. Bagula, Apr 14 2010 *) (* Second program *) t[n_, k_, m_]:= t[n,k,m]= If[k==1 || k==n, 1, (m*n-m*k+1)*t[n-1,k-1,m] + (m*k -(m -1))*t[n-1,k,m]]; T[n_, k_, m_]:= Binomial[n+1,k]*t[n+1,k+1,m]/(k+1); Table[T[n,k,1], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 01 2022 *)
-
Sage
@CachedFunction def t(n,k,m): if (k==1 or k==n): return 1 else: return (m*(n-k)+1)*t(n-1,k-1,m) + (m*k-m+1)*t(n-1,k,m) def T(n,k,m): return binomial(n+1,k)*t(n+1,k+1,m)/(k+1) flatten([[T(n,k,1) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 01 2022
Formula
T(n, k) = binomial(n+1, k)*t(n, k, m)/(k+1), where t(n,k,m) = (m*(n-k)+1)*t(n-1,k-1,m) + (m*k-m+1)*t(n-1,k,m), t(n,1,m) = t(n,n,m) = 1, and m = 1.
Sum_{k=0..n} T(n, k) = A099765(n+2).
T(n, k) = Eulerian(n+1, k)*Binomial(n+1, k)/(k+1). - Roger L. Bagula, Apr 14 2010
From G. C. Greubel, Apr 01 2022: (Start)
T(n, k) = binomial(n+1, k)*A008292(n+1, k+1)/(k+1).
T(n, n-k) = T(n, k).
T(n, 1) = A003469(n). (End)
Extensions
Edited by G. C. Greubel, Apr 01 2022
Comments