cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A155495 Triangle read by rows: t(n,m) = binomial(2*n,2*m) * binomial(n,m).

Original entry on oeis.org

1, 1, 1, 1, 12, 1, 1, 45, 45, 1, 1, 112, 420, 112, 1, 1, 225, 2100, 2100, 225, 1, 1, 396, 7425, 18480, 7425, 396, 1, 1, 637, 21021, 105105, 105105, 21021, 637, 1, 1, 960, 50960, 448448, 900900, 448448, 50960, 960, 1, 1, 1377, 110160, 1559376, 5513508, 5513508, 1559376, 110160, 1377, 1
Offset: 0

Views

Author

Roger L. Bagula, Jan 23 2009

Keywords

Comments

T(n,k) equals (-1)^k times the coefficient of x^k in 3F2(-n,-n,-n+1/2;1,1/2;x); see Mathematica code below. - John M. Campbell, Oct 23 2011

Examples

			Table starts:
  1;
  1,    1;
  1,   12,      1;
  1,   45,     45,       1;
  1,  112,    420,     112,        1;
  1,  225,   2100,    2100,      225,        1;
  1,  396,   7425,   18480,     7425,      396,        1;
  1,  637,  21021,  105105,   105105,    21021,      637,       1;
  1,  960,  50960,  448448,   900900,   448448,    50960,     960,      1;
  1, 1377, 110160, 1559376,  5513508,  5513508,  1559376,  110160,   1377,    1;
  1, 1900, 218025, 4651200, 26453700, 46558512, 26453700, 4651200, 218025, 1900, 1;
		

Crossrefs

Cf. A155497, A155516, A288470 (row sums).

Programs

  • Magma
    [Binomial(n, k)*Binomial(2*n, 2*k): k in [0..n], n in [0..12]]; // G. C. Greubel, May 29 2021
    
  • Maple
    seq(seq(binomial(2*n,2*m)*binomial(n,m), m=0..n),n=0..10); # Robert Israel, Jun 12 2017
  • Mathematica
    T[n_, k_]:= Binomial[2*n,2*k]*Binomial[n,k]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten
    Abs[Flatten[Table[CoefficientList[HypergeometricPFQ[{-n,-n,-n+1/2}, {1,1/2}, x], x], {n, 1, 20}]]] (* or *)
    T[n_,k_]:= (-1)^k*Coefficient[HypergeometricPFQ[{-n,-n,-n+1/2}, {1,1/2}, x], x^k] (* John M. Campbell, Oct 23 2011 *)
  • Sage
    flatten([[binomial(n, k)*binomial(2*n, 2*k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 29 2021

Formula

T(n, k) = binomial(n, k)*binomial(2*n, 2*k).
Sum_{k=0..n} T(n, k) = A288470(n).