A155558 Multi-bifurcating recursion of a factorial type based on the MacMahon numbers A060187 as a triangle sequence: t(n,k) = A060187(n,m) from polynomials; f(n, m) = If[m <= Floor[n/2], f(m, 1)*f(n - m, 1)*t(n + 1, m)].
1, 1, 6, 138, 10488, 8280, 2485656, 1392696, 1794643632, 663449904, 448448112, 3910528474128, 904634615952, 375908525712, 25621782562486656, 3570752184568704, 852504801992064, 514242863174016, 504057328351799983488
Offset: 0
Examples
Half MacMahon numbers: Table[Table[f[n, m]/(f[m, 1]*f[n - m, 1]), {m, 0, Floor[n/2]}], {n, 0, 10}]; {1}, {1}, {1, 6}, {1, 23}, {1, 76, 230}, {1, 237, 1682}, {1, 722, 10543, 23548}, {1, 2179, 60657, 259723}, {1, 6552, 331612, 2485288, 4675014}, {1, 19673, 1756340, 21707972, 69413294}, {1, 59038, 9116141, 178300904, 906923282, 1527092468} Factorial type triangle is: {1}, {1}, {6}, {138}, {10488, 8280}, {2485656, 1392696}, {1794643632, 663449904, 448448112}, {3910528474128, 904634615952, 375908525712}, {25621782562486656, 3570752184568704, 852504801992064, 514242863174016}, ...
Programs
-
Mathematica
Clear[t, n, m, f, x, p]; p[x_, n_] = (-1)^(n + 1)*(x - 1)^(n + 1)*Sum[(2* m + 1)^n*x^m, {m, 0, Infinity}]; t[n_, m_] := Table[CoefficientList[FullSimplify[ExpandAll[p[x, k]]], x], { k, 0, 10}][[n + 1, m + 1]]; f[0, 1] = 1; f[1, 1] = 1; f[2, 1] = 6; f[n_, m_] := f[n, m] = If[m <= Floor[n/2], f[m, 1]*f[n - m, 1]*t[n, m]]; a = Join[{{1}}, {{1}}, Table[Table[f[n, m], {m, 1, Floor[n/2]}], {n, 2, 10}]]; Flatten[%]
Formula
t(n,k)=A060187[n,m] from polynomials; f(n, m) = If[m <= Floor[n/2], f(m, 1)*f(n - m, 1)*t(n + 1, m)];
Comments